We have studied in vitro alveolar macrophages (AMs) obtained by tracheobronchial lavage from rats exposed to subacute (3 hours and 3 days) and chronic (3 weeks) hypoxia (Fi02 = 0.1) and from rats recovering from chronic hypoxia. Hydrogen peroxide production by AMs was measured by luminol- depcndent chemiluminescence after AMs adhered to the walls of the measuring cuvette, after stimulation with phorbol-myristate-acetate (PMA), and when N-formyl-methionyl-leucyl-phenylanine (FMLP) was added subsequently to the cells which had been previously stimulated by adherence or PMA. H2O2 production after cell adherence and adherence combined with FMLP stimulation did not differ between the groups. The increase of H2O2 production after adding PMA, and FMLP in addition to PMA was significantly higher in AMs from rats exposed to hypoxia for 3 days than in the controls. Other experimental groups did not differ from their controls. It is concluded that 3 days’ hypoxia primes AMs for enhanced production of H2O2 upon stimulation. The mechanism is probably at the level of synthesis of proteins involved in H2O2 production, or the shift to a more reactive phenotype of alveolar macrophages subpopulations.
Matrix metalloproteinases (MMPs) is a family of proteolytic enzymes involved in remodeling of extracellular matrix. Although proteolytic enzymes are produced by many cell types, mast cells seem to be more important than other types in remodeling of pulmonary arteries during hypoxia. Therefore, we tested in vitro production of MMPs and serine proteases in four cell types (mast cells, fibroblasts, vascular smooth muscle cells and endothelial cells) cultivated for 48 h under normoxic or hypoxic (3 % O2) conditions. MMP-13 was visualized by immunohistochemistry, MMP-2 and MMP-9 were detected by zymography in cell lysates. Enzymatic activities (MMPs, tryptase and chymase) were estimated in the cultivation media. Hypoxia had a minimal effect on total MMP activity in the cultivation media of all types of cells, but immunofluorescence revealed higher intensity of MMP-13 in the cells exposed to hypoxia except of fibroblasts. Tryptase activity was three times higher and chymase activity twice higher in mast cells cultivated in hypoxia than in those cultured in normoxia. Among all cell types studied here, mast cells are the most abundant source of proteolytic enzymes under normoxic and hypoxic conditions. Moreover, in these cells hypoxia increases the production of both specific serine proteases tryptase and chymase, which can act as MMPs activators., H. Maxová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Tissue hypoxia is less effective in increasing erythropoietin plasma levels in animals with post-transfusion polycythaemia. Since more red blood cells are decomposed under this condition, the effects of exogenous haemin and of lysed or heat-damaged red blood cells on activation of the erythropoietin gene have been studied in mice rendered hypoxic. Total RNA was extracted from the kidney and the liver and subjected to northern blot analysis with a probe containing part of the murine erythropoietin gene. Blood plasma was collected and erythropoietin levels were determined by radioimmunoassay. Erythropoietin gene activation was suppressed by haemin and increased red blood cell haemolysis. Tin (Sn) protoporphyrin, a haeme analogue which cannot bind oxygen, did not share the effect of haemin. On the other hand, when injected with haemin, Sn-protoporphyrin potentiated the suppressive effect of haemin, probably through inhibition of haemin catabolism. We conclude that the intracellular haeme concentration inhibits the kidney oxygen sensor and that this inhibition, mediated by products red blood cell degradation, is a physiological safeguard mechanism against excessive polycythaemia and its deleterious effects upon blood circulation.
Control (physiological saline treated) and ascorbic acid (AA) treated (1 mg . g'1 b.w. one hour before exposure) 18-day-old rats were exposed for 1 hour to high altitude in a hypobaric chamber and the mean lethal altitudes were calculated. AA displayed a protective effect, so that in two identical experiments the mean lethal altitude was 10 900 and 10 150 m in controls, while it was 11 500 and 11 450 m in AA treated animals.
Important fetal and perinatal pathologies, especially intrauterine growth restriction (IUGR), are thought to stem from placental hypoxia-induced vasoconstriction of the fetoplacental vessels, leading to placental hypoperfusion and thus fetal undernutrition. However, the effects of hypoxia on the fetoplacental vessels have been surprisingly little studied. We review here available experimental data on acute hypoxic fetoplacental vasoconstriction (HFPV) and on chronic hypoxic elevation of fetoplacental vascular resistance. The mechanism of HFPV includes hypoxic inhibition of potassium channels in the plasma membrane of fetoplacental vascular smooth muscle and consequent membrane depolarization that activates voltage gated calcium channels. This in turn causes calcium influx and contractile apparatus activation. The mechanism of chronic hypoxic elevation of fetoplacental vascular resistance is virtually unknown except of signs of the involvement of morphological remodeling., V. Hampl, V. Jakoubek., and Obsahuje seznam literatury
This study investigated the effects of riboflavin on energy metabolism in hypoxic mice. Kunming mice were fed diets containing riboflavin at doses of 6, 12, 24 and 48 mg/kg, respectively for 2 weeks before exposure to a simulated altitude of 6000 m for 8 h. Changes of riboflavin status and energy metabolism were assessed biochemically. Simultaneously, a 1H nuclear magnetic resonance (NMR) based metabolomic technique was used to track the changes of plasma metabolic profiling. It was found that the content of hepatic riboflavin was decreased and erythrocyte glutathione activation coefficient was elevated significantly under hypoxic condition. Meanwhile, increased plasma pyruvate, lactate, β-hydroxybutyrate and urea, as well as decreased plasma carnitine were observed. Riboflavin supplementation improved riboflavin status remarkably in hypoxic mice and decreased plasma levels of pyruvate, free fatty acids and β-hydroxybutyrate significantly. Plasma carnitine was increased in response to riboflavin supplementation. Results obtained from 1H NMR analysis were basically in line with the data from biochemical assays and remarkable changes in plasma taurine, choline and some other metabolites were also indicated. It was concluded that riboflavin requirement was increased under acute hypoxic condition and riboflavin supplementation was effective in improving energy metabolism in hypoxic mice., Y. P. Wang, J. Y. Wei, J. J. Yang, W. N. Gao, J. Q. Wu, C. J. Guo., and Obsahuje bibliografii
Adaptation to hypoxia is beneficial in cardiovascular pathology related to NO shortage or overproduction. However, the question about the influence of adaptation to hypoxia on NO metabolism has remained open. The present work was aimed at the relationship between processes of NO production and storage during adaptation to hypoxia and the possible protective significance of these processes. Rats were adapted to intermittent hypobaric hypoxia in an altitude chamber. NO production was determined by plasma nitrite/nitrate level. Vascular NO stores were evaluated by relaxation of the isolated aorta to diethyldithiocarbamate. Experimental myocardial infarction was used as a model of NO overproduction; stroke-prone spontaneously hypertensive rats (SHR-SP) were used as a model of NO shortage. During adaptation to hypoxia, the plasma nitrite/nitrate level progressively increased and was correlated with the increase in NO stores. Adaptation to hypoxia prevented the excessive endothelium-dependent relaxation and hypotension characteristic for myocardial infarction. At the same time, the adaptation attenuated the increase in blood pressure and prevented the impairment of endothelium-dependent relaxation in SHR-SP. The data suggest that NO stores induced by adaptation to hypoxia can either bind excessive NO to protect the organism against NO overproduction or provide a NO reserve to be used in NO deficiency., E. B. Manukhina, S. Yu. Mashina, B. V. Smirin, N. P. Lyamina, V. N. Senchikhin, A. F. Vanin, I. Yu. Malyshev., and Obsahuje bibliografii
It has been suggested that increase in acute nitric oxide (NO) or cyclic guanosine monophosphate production may be involved in cardioprotection induced by chronic hypoxia (CH). We studied the effect of NO donor molsi domine and phosphodiesterase type 5 inhibitor sildenafil on myocardial ischemia/reperfusion (I/R) injury in rats adapted to CH. Male Wistar rats were exposed to continuous hypoxia in a normobaric chamber (10 % O 2 , 4 weeks). Rats received either saline, mol sidomine (10 mg/kg body weight, i.v.) or sildenafil (0.7 mg/kg body weight, i.v.) 30 min before ischemia. Control rats were kept under normoxia and treated in a corresponding manner. Adaptation to CH increased the myocardial ischemic tolerance. Acute treat ment with either molsidomine or sildenafil significantly reduced infarct size in normoxic rats and further enhanced cardioprotection induced by CH. However, the cardioprotective effect of CH on I/R injury was not additive to the cardioprotection provided b y the drugs., P. Alánová, F. Kolář, B. Ošťádal, J. Neckář., and Obsahuje bibliografii
The possible protective action of pramiracetam, a pyrrolidinone nootropic drug, against hypobaric hypoxia was studied in two age groups of immature rats with implanted electrodes. Epileptic afterdischarges induced by hippocampal stimulation were used as a measure of hypoxic damage. Pramiracetam did not substantially change these afterdischarges in 12- and 18-day-old rat pups which were not exposed to hypoxia. Hypobaric hypoxia (simulated altitude of 7000 m for one hour) led to prolongation of the first afterdischarge in both age groups. Pramiracetam did not influence this prolongation in 12-day-old rats. The first afterdischarge was shortened significantly in 18-day-old animals but not to the level of rats not exposed to hypoxia. The afterdischarges elicited by repeated stimulations (four times at 10 min intervals) did not differ in pramiracetam-treatcd and control rats.
This study aimed to evaluate the changes in the erythropoietin
level and hematological variables in wrestlers after intermittent
hypoxic exposure (IHE). Twelve wrestlers were assigned into two
groups: hypoxia (sports training combined with IHE, n=6) and
control (sports training, n=6). An IHE was performed for
10 days, with one day off after 6 days, once a day for about
an hour. The concentrations of hydrogen peroxide (H2O2),
nitric oxide (NO), vascular endothelial growth factor (VEGF)
and erythropoietin (EPO), as well as total creatine kinase
activity (CK) were measured. Also, the hematological markers
(Hb -hemoglobin, Ht - hematocrit, RBC - red blood cell, WBC -
white blood cell, Ret - reticulocytes) were analyzed. The 6-day
IHE caused an increase in the levels of H2O2, NO and VEGF.
Similarly, the EPO level and WBC count reached the highest value
after 6 days of IHE. The total Ret number increase constantly
during 10 days of IHE. The hypoxia group showed a higher CK
activity compared to the control. In conclusion, 10-day IHE in
combination with wrestling training elevates levels of H2O2, NO
and VEGF, and improves the oxygen transport capacity by the
release of EPO and Ret in circulation.