Under physiological conditions the mammalian circadian system is synchronized to a cyclic environment. The central oscillator in the suprachiasmatic nuclei (SCN) responds predominantly to an external light (L) dark (D) cycle. Peripheral oscillators are more efficiently synchronized by metabolic cues. When the circadian system is exposed to opposing synchronizing cues, peripheral oscillators uncouple from the SCN. To consider influence of phase advances and delays in light regimens mimicking shift work, we analyzed the expression of clock genes (per2, bmal1) and natriuretic peptides (anp, bnp) in the heart of male rats. Experimental groups were exposed to a rotating LD regimen with either 8 h phase advance or delay for 11 weeks. Samples were taken for a 24 h cycle in 4 h intervals. Peripheral oscillators responded to rotating phase advance by decreasing rhythm robustness, while phase delay mostly influenced the phase angle between the acrophase of rhythmic gene expression and the external LD cycle. The expression of anp was arrhythmic in the heart of control rats and was not influenced by rotating LD regimens. The expression of bnp showed a daily rhythm with a nadir during the active phase. The daily rhythm in bnp expression diminished under rotating LD regimen conditions., I. Herichová, J. Ambrušová, L'. Molčan, A. Veselá, P. Svitok, M. Zeman., and Obsahuje bibliografii
Tissue renin-angiotensin systems are known to behave differently from the circulating renin-angiotensin system (RAS). It has already been proposed that not only the circulating RAS, but also RAS localized in the cardiac tissue plays an important role in the heart failure. The objective of this study was to compare the gene expression of individual components of the renin-angiotensin system in hearts of normotensive and hypertensive rats. Two genetically hypertensive rat strains - spontaneously hypertensive rats (SHR) and hereditary hypertriglyceridemic rats (HTG) - were compared with Wistar-Kyoto (WKY) and Lewis (LEW) normotensive controls. In addition, developmental changes in gene expression of individual components of cardiac RAS were studied in 20-day-old fetuses, 2-day-old newborns and 3-month-old HTG and LEW rats. In our study, the angiotensinogen gene expression did not differ either among adult normotensive and hypertensive strains, or during development. In contrast, the renin gene expression was significantly increased in hearts of hypertensive compared to normotensive rats. Moreover, a 5-fold increase of renin mRNA was observed in hearts of HTG rats between day 2 and the third month of age. There was also an age-dependent increase of ACE gene expression in both HTG and LEW rats which was substantially delayed in HTG hearts. In conclusion, the results of our study suggest that overexpression of the cardiac renin gene in hypertensive strains could participate in the structural and functional changes of the heart during the development of hypertension., D. Jurkovičová, Z. Dobešová, J. Kuneš, O. Križanová., and Obsahuje bibliografii
Huntingtonova nemoc (HD) je neurodegenerativní porucha způsobená elongací CAG repetic v genu kódující protein huntingtin (Htt). U pacientů jsou v postižených tkáních přítomny vedle monomerní formy hlavně N‑koncové fragmenty, oligomery a polymery mutovaného huntingtinu (mtHtt), oproti tomu samotná monomerní forma mtHtt je exprimována v podstatě ve všech buňkách. Nejvíce postižené tkáně jsou bazální ganglia a mozková kůra. V této studii jsme analyzovali přítomnost N‑koncových fragmentů a oligomerů Htt v různých tkáních 24- a 36měsíčních transgenních (TgHD) miniprasat exprimujících N‑koncovou část lidského mutovaného huntingtinu a jejich zdravých sourozenců. Zjistili jsme, že mozková kůra a varlata na rozdíl od svalu a srdce TgHD miniprasat obsahují kromě monomerní formy i N‑koncové fragmenty a oligomerní smíry. Ve svalech z 36 měsíčních TgHD miniprasat však již začíná mírná fragmentace. Tato zjištění napodobují časnou progresi onemocnění u lidí, a proto miniprase poskytuje slibný model pro terapeutické testování HD. Klíčová slova: Huntingtonova nemoc – transgenní miniprasečí model – mutovaný huntingtin –proteinové fragmenty – oligomerní struktury Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy. Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů., Huntington’s disease (HD) is a neurodegenerative disorder caused by the the elongation of CAG triplet repeat in the gene encoding the huntingtin protein (Htt). In patients, in addition to the monomeric form of huntingtin, N‑terminal fragments, oligomers, and polymers are present mostly in the affected tissues, even though the mutated huntingtin (mtHtt) is expressed basically in all cells. The most affected tissues are basal ganglia and cerebral cortex. In this study we analyzed the presence of N‑terminal fragments and oligomers of Htt in different tissues of 24 and 36 months old experimental animals. This was done in our large animal model of HD, which uses transgenic (TgHD) minipigs expressing N‑terminal part of human mtHtt. Among all the tissues tested, we found cortex and testes to contain N‑terminal fragments as well as oligomeric smears in TgHD minipigs compared to wild type siblings. On the other hand, we did not detect any fragments or oligomers in muscle and heart of TgHD minipigs, only starting fragmentation in muscles of 36 months old animals. These findings mimic the early progression of the disease in humans, hence presents minipig as a promising model for therapeutic testing of HD., and D. Vidinska, J. Motlik, Z. Ellederova
The objective of the present experiment was to assess the involvement of small intestine in expression of susceptibility or resistance to the high-fat/high-energy diet. The investigation was carried out in adult male Sprague-Dawley rats fed either standard laboratory diet (3.2 kcal/g, 9.5 % fat) or high-fat (HF) diet (4.04 kcal/g, 30 % fat) for 4 weeks as well as in HF rats that were retrospectively designated on the bases of their higher or lower weight gain as sensitive (DIO) or resistant (DR) to obesity. Our results revealed in HF group significant increase in energy intake, food efficiency, weight gain and Lee´s index of obesity. Moreover, in comparison with controls, a significantly increased duodenal and jejunal alkaline phosphatase (AP) and α-glucosidase activity as well as hypertrophy of jejunal mucosa (increased protein/DNA ratio) were observed in HF fed rats. In contrast, intestinal function was inversely related to energy intake or to the development of adiposity in DIO vs. DR rats. The DR rats had significantly greater AP and α-glucosidase activity and more pronounced suppression of energy intake than obese DIO rats. It indicates that the increase of enzyme activities and the lowered effectiveness of nutrient absorption might be a significant factor preventing the expression of obesity proneness. This information contributes to a better understanding of a complex interaction between HF diet feeding and small intestinal adaptability, which determines the energy homeostasis and predict the ability to resist or develop obesity in these phenotypes., Z. Šefčíková, T. Hájek, Ľ. Lenhardt, Ľ. Raček, Š. Možeš., and Obsahuje bibliografii a bibliografické odkazy
The influence of long-term hypodynamy on the calcium and phosphorus levels was studied in the bones of Japanese quails. The hypodynamy evoked different changes in the calcium and phosphorus content in males and females. The calcium content in the marrow of femurs was only changed in the hens, while in cockerels it was significantly decreased in the upper part and marrow of the tibia. Furthermore, changes in the phosphorus content were observed only in the tibia of cockerels., J. Antalíková, M. Baranovská, I. Mravcová, V. Sabo, P. Škrobánek., and Obsahuje bibliografii
Carbonic anhydrase (CA) catalyzes reversible hydration of CO2 and it can compensate for the lack of H2O and CO2 in plants under stress conditions. Antioxidative enzymes play a key role in scavenging reactive oxygen species and in protecting plant cells against toxic effects. Tomato represents a stress-sensitive plant while violet orychophragmus belongs to adversity-resistant plants. In order to study the drought responses in tomato and violet orychophragmus plants, CA and antioxidative enzyme activities, photosynthetic capacity, and water potential were determined in plants under drought stress. We found that there were similar change trends in CA activity and drought tolerance in violet orychophragmus, and in antioxidative enzymes and drought tolerance in tomato plants. Basic mechanisms of drought resistance should be identified for understanding of breeding measures in plants under stress conditions., W. H. Sun, Y. Y. Wu, X. Y. Wen, S. J. Xiong, H. G. He, Y. Wang, G. Q. Lu., and Obsahuje seznam literatury
Administration of anti-tumor necrosis factor antibody (anti-TNF, infliximab) down-regulates T helper 1 (Th 1) cytokines production in intestinal mucosa of patients with Crohn´s disease (CD). Interleukin 10 (IL-10) is thought to be involved in CD pathogenesis through regulation of the Th 1 response. The aim of this study was to determine the IL-10 response in CD patients treated with anti-TNF. Fourteen patients with active CD received 5 mg/kg of infliximab; clinical activity assessed by Crohn´s Disease Activity Index (CDAI), α1-acid glycoprotein and serum IL-10 were determined before and after treatment, in month 0, 1 and 5. In the group with a good clinical response, IL-10 levels diminished significantly in month 1 (p<0.05) and remained decreased in month 5. The group with a lower response showed a significant increase in IL-10 levels in month 1 (p<0.05). α1-acid glycoprotein levels obtained before treatment were significantly elevated in the group with a good clinical response (p<0.05) and a significant decrease in month 1 was observed in this group (p<0.05). These observations suggest that a pattern of IL-10 response might be related to the clinical response to anti-TNF treatment in CD., Z. Detková, V. Kupčová, M. Príkazská, L. Turecký, S. Weissová, E. Jahnová., and Obsahuje bibliografii
This work aimed to study the effects of commercial doses of the fungicide, Mancozeb, on the photosynthetic apparatus of lettuce young leaves (YL) and expanded leaves (EL). Seven days after Mancozeb application, chlorophyll a fluorescence, pigment contents, lipid peroxidation, and proline content were evaluated. Independently of leaf age, Mancozeb treatment reduced the efficiency of photosystem II photochemistry, increased the nonphotochemical quenching and proline content, decreased pigment contents, and induced lipid peroxidation. Moreover, EL showed a more stable photosynthetic apparatus, less prone to oxidative damages compared with YL. The parameters measured proved to be good markers for the rapid and preliminary diagnosis of fungicide toxicity., M. C. Dias, P. Figueiredo, I. F. Duarte, A. M. Gil, C. Santos., and Obsahuje bibliografii
Objective of this study was to characterize osmotically-induced insulin secretion in two tumor cell lines. We compared response of freshly isolated rat pancreatic islets and INS-1 and INS-1E tumor cell lines to high glucose, 30 % hypotonic medium and 20 % hypertonic medium. In Ca2+-containing medium glucose induced insulin release in all three cell types. Hypotonicity induced insulin secretion from islets and INS-1 cells but not from INS-1E cells, in which secretion was inhibited despite similar increase in cell volume in both cell types. GdCl3 (100 μmol/l) did not affect insulin response from INS-1E cells to hypotonic challenge. Hypertonic medium inhibited glucose-induced insulin secretion from islets but not from tumor cells. Noradrenaline (1 μmol/l) inhibited glucose-induced but not swelling-induced insulin secretion from INS-1 cells. Surprisingly, perifusion with Ca2+-depleted medium showed distinct secretory response of INS-1E cells to hypotonicity while that of INS-1 cells was partially inhibited. Functioning glucose-induced insulin secretion is not sufficient prerequisite for hypotonicity-induced response in INS-1E cells suggesting that swelling-induced exocytosis is not essential step in the mechanism mediating glucose-induced insulin secretion. Both cell lines are resistant to inhibitory effect of hyperosmolarity on glucose-induced insulin secretion. Response of INS-1E cells to hypotonicity is inhibited by the presence of Ca2+ in medium., M. Orečná, R. Hafko, Z. Bačová, J. Podskočová, D. Chorvát Jr., V. Štrbák., and Obsahuje bibliografii a bibliografické odkazy
Derivative of 6-methyluracil, selective cholinesterase inhibitor C-547 potentiates miniature endplate currents (MEPCs) in rat external intercostal muscles (external ICM) more effectively than in internal intercostal muscles (internal ICM). Effect of the C-547 on intercostal muscles was compared with those on extensor digitorum longus (EDL) and diaphragm muscles. Half-effective concentrations for τ of MEPC decay arranged in increasing order were as follows: EDL, locomotor muscle, most sensitive = 1.3 nM, external ICM, inspiration muscle = 6.8 nM, diaphragm, main inspiration muscle = 28 nM, internal ICM, expiration muscle = 71 nM. External ICM might therefore be inhibited, similarly as the limb muscles, by nanomolar concentrations of the drug and do not participate in inspiration in the presence of the C-547. Moreover, internal ICM inhibition can hinder the expiration during exercise-induced fast breathing of C-547-treated experimental animals., K. Petrov ... [et al.]., and Obsahuje seznam literatury