Nicosulfuron is a post-emergence herbicide used for weed control in fields of maize (Zea mays L.). We used a pair of nearly isogenic inbred lines, SN509-R (nicosulfuron-resistant) and SN509-S (nicosulfuron-sensitive), to study the effect of nicosulfuron on waxy maize seedling. After the nicosulfuron treatment, net photosynthetic rate, stomatal conductance, transpiration rate, leaf maximum photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and the actual photochemical efficiency of PSII were significantly lower in SN509-S than those of SN509-R, contrary to intercellular CO2 concentration, stomatal limitation, and nonphotochemical quenching. Compared to SN509-R, antioxidant enzyme activities in SN509-S decreased significantly in response to the nicosulfuron treatment, while SN509-S exhibited an increased malondialdehyde content, which was associated with lower antioxidant enzyme activities. These results collectively suggest that the nicosulfuron-resistance mechanism was associated with photosynthetic rate, reactive oxygen species metabolism, and protective mechanisms., J. Wang, X. M. Zhong, X. L. Lv, Z. S. Shi, F. H. Li., and Obsahuje bibliografii
Field experiments were conducted under rain-fed conditions to study the growth and photosynthetic efficiency of transgenic Bt cotton hybrids during 2002-03 and 2003-04 seasons. Three Bt cotton hybrids (Bollgard 1) and their non-Bt (NBt) counterparts viz. MECH 12, MECH 162, and MECH 184 were grown along with a local hybrid NHH44. Growth parameters such as plant height, main-stem nodes, biomass accumulation, and physiological processes like stomatal conductance (gs), and rates of transpiration (E) and photosynthesis (PN) did not differ significantly between Bt and NBt hybrids up to 80 DAS (d after sowing). Squaring commenced at 50 DAS both in Bt and NBt. The loss of young fruiting forms by the entomological factors was three times less in Bt than NBt. As a consequence, Bt had more early formed bolls on the lower canopy which contributed to higher biomass and seed cotton yield. On the other hand, bolls distributed intermittently in NBt. Heavy boll load altered the growth and physiological processes, and as a result Bt had higher gs, E, and PN than NBt. Since developing bolls (sink) divert the saccharides and nutrients from other organs, Bt plants with heavy boll load senesced early and stopped the production of new squares and bolls. Thus, the boll load influenced the change in growth and physiological processes of Bt from NBt. and K. B. Hebbar, N. K. Perumal, B. M. Khadi.
The content of cytokinins (CKs), the plant inhibitors of the final phase of plant development, senescence, is effectively controlled by irreversible degradation catalysed by cytokinin oxidase/dehydrogenase (CKX). In transgenic tobacco, denoted as AtCKX, with over-expressed CKX causing lowered CK content, we investigated changes in the time courses of chlorophyll (Chl) and xanthophyll (violaxanthin, antheraxanthin, zeaxanthin, neoxanthin, and lutein) contents. We also determined parameters of slow Chl fluorescence kinetics such as minimum Chl fluorescence yield in the darkadapted state F0, maximum quantum yield of PS2 photochemistry (Fv/Fm), maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in photosystem 2 (PS2), Fv/F0, non-photochemical quenching (NPQ), and effective quantum yield of photochemical energy conversion in PS2 (Φ2). We used three different developmental leaf stages, old, mature, and young, and compared this with time courses of these characteristics in leaves with natural CK levels. The parameters Fv/Fm, Fv/F0, and Φ2 were unchanged during ageing in AtCKX plants in contrast to control ones where a significant decrease in old leaves was found. In control plants F0 increased during ageing, but in the oldest leaf a considerable decrease was observed. This could indicate progressive damage to PS2 reaction centres and then detachment and rapid degradation of Chl. This is in agreement with time course of Chl content. NPQ decreased with age and was similar in both plant types. We observed a decline of xanthophyll contents in the oldest leaves in both plant types, but the contents were enhanced in AtCKX compared to control plants, especially of neoxanthin. The higher xanthophyll contents in the transgenic plants contribute to a better photoprotection and the fluorescence parameters indicated that photosynthetic apparatus was in better condition compared to control and it consequently postponed the onset of leaf senescence. and Z. Mýtinová, D. Haisel, N. Wilhelmová.
To address the issue of water eutrophication and to use water more effectively, we conducted experiments on rice (Oryza sativa L.) grown in floating culture. From 2009 to 2011, we compared the photosynthesis and root characteristics of the rice, hybrid line Zhuliangyou 02, grown under a conventional tillage and in a floating culture in Huaihua, the home of hybrid rice. Rice in the floating culture showed a higher net photosynthetic rate and stomatal conductance than that under the conventional tillage. The activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme were 32 and 28% higher, respectively, in rice in the floating culture than under the conventional tillage. Rice in the floating culture also showed significantly greater number of roots, root activity, and antioxidant enzyme activity than that under the conventional tillage. Compared with rice under the conventional tillage, rice in the floating culture had 18 and 24% higher tiller number and effective panicle number, respectively. These results suggested that the floating culture system can promote rice production through enhancing root absorption, increasing effective panicle number, and improving the photosynthetic rate. In addition, rice cultivated in the floating culture could remove excess nutrients from water, which addresses the problems of a lack of arable land and water pollution., H.-X. Wu ... [et al.]., and Obsahuje bibliografii
Photosynthesis has walked into the path of evolution for over millions of years. Organisms relying directly on photosynthesis, when subjected to adverse environments for a long duration, experience retardation in their growth and development. Salinity stress is perceived as one of the major threats to agriculture as it can cause an irreversible damage to the photosynthetic apparatus at any developmental stage of the plant. However, halophytes, a special category of plants, carry out all life processes, including photosynthesis, without showing any compromise even under high saline environments. The fascinating mechanism for Na+ exclusion from cytosol besides retaining photosynthetic efficiency in halophytes can provide a valuable genetic resource for improving salt stress tolerance in glycophytes. Understanding how plants stabilize their photosynthetic machinery and maintain the carbon balance under saline conditions can be extremely useful in designing crops for saline and dry lands., S. Wungrampha, R. Joshi, S. L. Singla-Pareek, A. Pareek., and Obsahuje bibliografické odkazy
Net photosynthetic rate (PN), stomatal conductance (gS), transpiration rate (E), intercellular CO2 concentration (Ci), leaf water potential (Ψw), leaf area, chlorophyll (Chl) content, and the activities of photosynthetic carbon reduction cycle (PCR) enzymes in two mulberry (Morus alba L.) cultivars (drought tolerant Anantha and drought sensitive M-5) were studied during water stress and recovery. During water stress, PN, gS, and E declined whereas Ci increased. PN, gS, and E were less affected in Anantha than in M-5, which indicates tolerance nature of Anantha over M-5. Activities of ribulose-5-phosphate kinase, NAD- and NADP-glyceraldehyde-3-phosphate dehydrogenases, and 3-phosphoglycerate kinase decreased with increasing stress in both the cultivars. The enzyme activities less affected in tolerant (Anantha) than in sensitive cultivar (M-5) were restored after re-watering to almost initial values in both the cultivars. Re-watering of the plants led to an almost complete recovery of PN, E, and gS, indicating that a short-term stress brings about reversible effect in these two cultivars of mulberry. and S. Thimmanaik ... [et al.].
The microstructure of leaves and ultrastructure of chloroplasts were examined in tomato (Lycopersicon esculentum L.) plants treated with elevated temperature. Plants were exposed to 35°C for 30 d after florescence. The plants grown continuously under 25°C served as controls. Compared with the controls, the net photosynthetic rate (PN) in stressed plants decreased significantly. Stomatal conductance, intercellular CO2 concentrations, the rate of transpiration, and the limitation of stomatal conductance showed that the decrease in PN was caused mainly by nonstomatal restrictions. Meanwhile, stomata density increased significantly in the stressed plants. The stomata status of opening and closing became disorganized with a prolonged 35°C exposure. The damage of chloroplast membrane occurred earlier and was more serious in the plants under elevated temperature. At the same time, the thylakoids were loosely distributed with lesser grana, but the number of lipid droplets increased in chloroplasts. The number of starch grains in chloroplasts increased first and then decreased. In addition, the length of the main nerve in leaves increased and the main vein showed distortion in the plants stressed by 35°C. An increase was observed in the number of cells on the abaxial side of the main vein and these cells were overly congregated. The thickness of a vertical section became thinner in the stressed leaves. The cells of the upper epidermis thinned, and the ratio of palisade tissue to spongy tissue decreased. Generally, the photosynthetic apparatus of tomato changed significantly and the changed chloroplast ultrastructure might be one of the important reasons that caused the decrease of PN under 35°C., J. Zhang, X. D. Jiang, T. L. Li, X. J. Cao., and Obsahuje bibliografii
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (Ψ) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO2 during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 °C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO2 assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions. and R. V. Ribeiro ... [et al.].
Tolerance of Festuca rupicola Heuff., Botriochloa ischaemum (L.) Keng., and Salvia nemorosa L. to co-occurring drought, high air temperature and high irradiance were investigated in stands representing different degree of degradation. Air and leaf temperatures were higher for the stands in the advanced degradation stage. The net photosynthetic rate was not significantly lower and WUE was depressed in the degraded stands as compared to the intact stands. Carbon fixation type seems to have outstanding importance in the outcome of degradation processes in semiarid temperate grasslands.
Leaf gas exchange characteristics were measured in twenty woody species that differ in succession status ranging from pioneer species (PS) to late succession species (LS) in a Brazilian rain-reforestation ecosystem. Photon-saturated photosynthetic rate, calculated per either a leaf area (PNA) or a dry mass (PNM) basis, differed among species. PNA and PNM were highest in PS and lowest in LS. Variation among species was 3-fold (from 7 to 23 μmol m-2 s-1) for PNA, and 5-fold (from 50 to 275 μmol kg-2 s-1) for PNM. The highest PNA (23 μmol m-2 s-1) and PNM (275 μmol kg-2 s-1) values were recorded in PS Croton urucurana, while the lowest PNA (7 μmol m-2 s-1) and PNM (50 μmol kg-2 s-1) values were recorded in LS Aspidosperma cylindrocarpon. A considerable overlap was recorded between PS and LS in values of stomatal conductance (gs), transpiration rate (E), and leaf mass to area ratio (ALM). However, C. urucurana also showed highest gs and E. PNM was highly correlated with ALM in both PS and LS (r=-0.75 and -0.90, respectively). The high values of instantaneous transpiration efficiency (ITE) and intrinsic water use efficiency (WUEi) were also observed in the PS when compared with the LS. and A. Nogueira ... [et al.].