Diabetes mellitus is characterized by oxidative stress, which in turn determines endothelial dysfunction. Gliclazide is a sulphonylurea antidiabetic drug with antioxidant effects due to its azabicyclo-octyl ring. It has been reported to potentially protect the vasculature through improvements in plasma lipid levels and platelet function. We hypothesized that gliclazide has a beneficial effect on endothelial function in Goto-Kakizaki rats (GK), an animal model of type 2 diabetes fed an atherogenic diet for 4 months. We evaluated the influence of gliclazide on both metabolic and oxidative status and NO-mediated vasodilation. GKAD rats showed increased oxidative stress and impaired endothelium-dependent vasodilation. GKAD rats treated with gliclazide showed increased sensitivity to NO-mediated vasodilation, a significant decrease in fasting glycemia and insulinemia, and a significant decrease in systemic oxidative stress. In conclusion, our results suggest that gliclazide treatment improves NO-mediated vasodilation in diabetic GK rats with dyslipidemia probably due to its antioxidant effects, although we cannot rule out substantial benefits due to a reduction in fasting blood glucose. The availability of a compound that simultaneously decreases hyperglycemia, hyperinsulinemia, and inhibits oxidative stress is a promising therapeutic candidate for the prevention of vascular complications of diabetes., C. M. Sena ... [et al.]., and Obsahuje seznam literatury
The purpose of this study was to determine the effect of a 15-week omega-3 rich diet on age-related differences in myocardial antioxidant defense and inflammation. 20 mature (M) (6 mo.) and 20 old (O) (15 mo.) male Fisher 344 rats were assigned to two diet groups: Control (CON) or Fish Oil (FO). Following the diet, animals were sacrificed and left ventricular (LV) heart tissue was harvested for biochemical assays and western blot analysis. No differences were observed in expression of LV interleukin-6 (IL-6) and tumor necrosis factor-α as well as hydrogen peroxide (H2O2) production between MCON and OCON. However, LV catalase protein expression and activity were increased in OCON vs. MCON and accompanied by increased expression of superoxide dismutase (SOD)-1. In contrast, LV IL-6 was lower in MFO vs. old rats, and LV H2O2 was decreased in MFO and OFO relative to respective control groups. Protein expression and activity of LV catalase and SOD-1 expression were increased in OFO similarly to OCON, but LV SOD activity was also increased in OFO vs. mature rats. In summary, FO supplementation increased myocardial antioxidant defense in all animals and augmented age-associated increases in antioxidant capacity in the absence of changes in inflammation., S. Lennon-Edwards, T. A. Schellhardt, J. M. Kuczmarski., and Obsahuje bibliografii
Hyperglycemia is known to cause oxidative stress that leads mainly to enhanced production of mitochondrial reactive oxygen species (ROS). It has been demonstrated that hyperbaric oxygen (HBO) treatment also increases the formation of ROS. There are, however, no comprehensive evaluations of such oxidative effects in diabetes which requires HBO treatment. The purpose of this study is to investigate the influence of a clinically-recommended HBO treatment on glucose homeostasis and oxidative stress in rats with streptozotocin (STZ)-induced diabetes. Under the clinically-used HBO exposure protocol, the levels of blood glucose, thiobarbituric acid reactive substances (TBARS) as a lipid peroxidation marker, and the activity of superoxide dismutase (SOD) as an antioxidant enzyme marker were investigated in the erythrocytes, liver, pancreas, skeletal muscle, and brain of rats with STZ-induced diabetes. The levels of blood glucose and TBARS increased significantly (p<0.05), and the activity of SOD decreased significantly (p<0.05) in the erythrocytes and all organs of rats with diabetes subjected to HBO exposure. These results suggested that HBO exposure might boost glucose autoxidation and increase ROS production in STZ-induced diabetes as side-effects of administering HBO treatment for the first time., T. Matsunami ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu2+ induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern., R. Večeřa, N. Škottová, P. Váňa, L. Kazdová, Z. Chmela, Z. Švagera, D. Walterová, J. Ulrichová, V. Šimánek., and Obsahuje bibliografii
The consequences of increased oxidative stress, measured as the level of malondialdehyde (MDA) during ischemia/reperfusion, were studied in 48 patients in the acute phase of myocardial infarction (AMI) and a control group (21 blood donors). The serum levels of a-tocopherol and b-carotene were followed. Immediately after the treatment onset the level of a-tocopherol started to decrease, reaching a plateau after 24 h. The consumption of b-carotene was delayed by 90 min. Steady decline was detected during the whole time interval studied (48 h). Glutathione peroxidase (GPx) activity, as a representative of antioxidant enzymes, was estimated in whole blood. The influx of oxygenated blood was accompanied by a stimulation of GPx activity, which reached its maximum at the time of completed reperfusion. When comparing the AMI patients with the control group, the levels of MDA were found significantly increased, which indicates that oxidative stress is already increased during ischemia. Lower antioxidant levels found in the patients might either already be the result of vitamin consumption during ischemia or be a manifestation of their susceptibility to AMI. Monitored consumption of a-tocopherol and b-carotene during reperfusion indicated that in the case of patients, whose level of antioxidant vitamins is below the threshold limit, a further substantial decrease of antioxidant vitamins during reperfusion could enhance the oxidative damage of the myocardium., V. Mužáková, R. Kanďár, P. Vojtíšek, J. Skalický, R. Vaňková, A. Čegan, Z. Červinková., and Obsahuje bibliografii
Experimental data on the effect of nicotine on cerebral microvessel thrombosis is lacking. Therefore, this study was carried out to elucidate the effects of nicotine on platelet aggregation in cerebral (pial) microcirculation of the mouse, and the possible protective effect of vitamins C and E. Male TO mice were divided into six groups, and injected i.p. with saline as a control, nicotine (1 mg/kg), vi tamin C alone (100 mg/kg), vitamin E alone (100 mg/kg), nicotine plus vitamin C or nicotine plus vitamin E, all for one week before the experiment. After one week, platelet aggregation in ce rebral microvessels of these groups of mice were studied in vivo . The appearance of the first platelet aggregation and total blood flow stop in arterioles and venules were timed in seconds. In the animals treated with nicotine, venules did not show any alteration in the platelet aggregation time in comparison to the control animals. However, in arterioles platelet aggreg ation time was significantly accelerated (p<0.001) in nicotine-treated animals as compared to controls. Both vitamins C and E prevented the shortening of arteriolar platelet aggregation ti me significantly (p<0.001) when applied with nicotine but not alone. It can be concluded that nicotine enhances the susceptibility to thrombosis in the cerebral arterioles in vivo and that vitamins C and E have alleviating effect on nicotine-induced thrombotic events in mice pial microvessels., M. A. Fahim ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Various reactive oxygen species (ROS) may be produced from normal biochemical, essential metabolic processes or from external sources as exposure to a variety of agents presented in the environment. Lipids, proteins, carbohydrates and DNA are all capable of reacting with ROS and can be implicated in etiology of various human disorders (rheumatoid arthritis, reperfusion injury, atherosclerosis, lung diseases etc.). In the organism damage by ROS is counteracted with natural antioxidants (glutathione peroxidases, superoxide dismutases, catalase, glutathione, ubiquinol, uric acid, and essential minerals) and nutritional antioxidants from diet (i.e. vitamins E, C, carotenoids). Possible mechanisms of nutritional depletion and side effects of high intake are in the article described., Z. Zadák ... [et al.]., and Obsahuje seznam literatury
This study aimed to examine the effect of dietary flavonoid isoquercitrin on ovarian granulosa cells using the immortalized human cell line HGL5. Cell viability, survival, apoptosis, release of steroid hormones 17β-estradiol and progesterone, and human transforming growth factor-β2 (TGF-β2) and TGF-β2 receptor as well as intracellular reactive oxygen species (ROS) generation were investigated after isoquercitrin treatment at the concentration range of 5-100 μg.ml-1 . It did not cause any significant change (p>0.05) in cell viability as studied by AlamarBlue assay in comparison to control. No significant change was observed (p>0.05) in the proportion of live, dead and apoptotic cells as revealed by apoptotic assay using flow cytometry. Similarly, the release of 17β-estradiol, progesterone, TGF-β2 and its receptor were not affected significantly (p>0.05) by isoquercitrin as detected by ELISA, in comparison to control. Except for the highest concentration of 100 μg.ml-1 , which led to oxidative stress, isoquercitrin exhibited antioxidative activity at lower concentration used in the study (5, 10, 25, and 50 μg.ml-1 ) by hampering the production of intracellular ROS, in comparison to control, as detected by chemiluminescence assay (p<0.05). Findings of the present study indicate an existence of the antioxidative pathway that involves inhibition of intracellular ROS generation by isoquercitrin in human ovarian granulosa cells., Adriana Kolesárová, Katarína Michalcová, Shubhadeep Roychoudhury, Simona Baldovská, Eva Tvrdá, Jaromír Vašíček, Peter Chrenek, Ľuboslav Sanisló, Vladimír Křen., and Obsahuje bibliografii
Despite the fact that vessels have sparse cholinergic innervation, acetylcholine (ACh), the primary neurotransmitter of parasympathetic nervous system, has been commonly used in physiological experiments to assess vascular function. ACh is hydrolyzed by two cholinesterases (ChE), namely acetylcholinesterase and butyrylcholinesterase (BChE). However, little is known about these enzymes in blood vessels. The aim of the project was to characterize the expression and activity of ChE in rat aorta. As the effect of ACh on vascular tone depends on the presence of endothelium, Wistar rats were used as a model with intact endothelium and spontaneously hypertensive rats as a model of impaired endothelial function. Relative expressions of both ChE in different parts of the aorta were determined using RT-qPCR. Enzyme activities were assessed in tissue homogenates by Ellman's assay. Here we showed that both ChE are present in each part of rat aorta, while mRNA is more abundant for BChE than for AChE, irrespective of aortic compartment or genotype. Normotensive Wistar rats possess higher aortic mRNA expression and activity of BChE compared to SHR. We concluded that BChE is the dominant type of ChE in rat aorta and it might play an important role in the regulation of vascular tone., Kristína Szmicseková, Lenka Bies Piváčková, Zuzana Kiliánová, Ľubica Slobodová, Peter Křenek, Anna Hrabovská., and Obsahuje bibliografii