Visfatin was originally described as an adipokine with insulin mimetic effects. Recently, it was found that visfatin is identical with the Nampt (nicotinamide phosphoribosyltransferase) gene that codes for an intra- and extracellular NAD biosynthetic enzyme and is predominantly expressed outside the adipose tissue. In the current study, we found strong protein and mRNA expression of visfatin in rat heart, liver, kidney, and muscle, while the expression of visfatin in visceral fat was significantly lower and undetectable in subcutaneous fat. The insulin-mimetic effects of visfatin (extracellular form of Nampt or eNampt) are controversial and even less is known about autocrine effects of visfatin (intracellular form of Nampt or iNampt). Since liver plays a major role in glucose metabolism, we studied visfatin effects on insulin-stimulated cellular glucose uptake in Fao rat hepatocytes using RNA interference (RNAi). RNAi-mediated downregulation of visfatin expression in Fao cells was associated with significantly reduced NAD biosynthesis (0.3±0.01 vs. 0.5±0.01 mmol/h/g, P<0.05) and with significantly decreased incremental glucose uptake after stimulation with insulin when compared to controls with normal expression of visfatin (0.6±0.2 vs. 2.2±0.5 nnmol/g/2 h, P=0.02). These results provide evidence that visfatin exhibits important autocrine effects on sensitivity of liver cells to insulin action possibly through its effects on NAD biosynthesis., V. Škop ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
In the current study, we tested a hypothesis that CD36 fatty acid (FA) transporter might affect insulin sensitivity by indirect effects on FA composition of adipose tissue. We examined the effects of CD36 downregulation by RNA interference in 3T3-L1 adipocytes on FA transport and composition and on sensitivity to insulin action. Transfected 3T3-L1 adipocytes, without detectable CD36 protein, showed reduced neutral lipid levels and significant differences in FA composition when levels of essential FA and their metabolites were lower or could not be detected including gamma linolenic (C18:3 n6), eicosadienic (C20:2 n6), dihomo-gamma linolenic (C20:3 n6), eicosapentaenoic (EPA) (C20:5 n3), docosapentaenoic (DPA) (C22:5 n3), and docosahexaenoic (DHA) (C22:6 n3) FA. Transfected 3T3-L1 adipocytes exhibited a significantly higher n6/n3 FA ratio, reduced Δ5-desaturase and higher Δ9-desaturase activities. These lipid profiles were associated with a significantly reduced insulin-stimulated glucose uptake (4.02±0.1 vs. 8.42±0.26 pmol.10-3 cells, P=0.001). These findings provide evidence that CD36 regulates FA composition thereby affecting sensitivity to insulin action in 3T3-L1 adipocytes., K. Kontrová, J. Zídková, B. Bartoš, V. Skop, J. Sajdok, L. Kazdová, K. Mikulík, P. Mlejnek, V. Zídek, M. Pravenec., and Obsahuje bibliografii a bibliografické odkazy
We assessed the effect of the previously uncovered gap junctio n protein alpha 8 (Gja8) mutation present in spontaneously hypertensive rat - dominant cataract (SHR - Dca ) strain on blood pressure, metabolic profile, and heart and renal transcriptomes. Adult, standard chow-fed male rats of SHR and SHR - Dca strains were used. We found a significant, consistent 10-15 mmHg decrease in both systolic and diastolic blood pressures in SHR - Dca compared with SHR (P<0.01 and P<0.05 , respectively; repeated measures analysis of variance (ANOVA)). With immunohistochemistry, we were able to localize Gja8 in heart, kidney, aorta, liver, and lungs, mostly in endothelium; with no differences in expression between strains. SHR - Dca rats showed decreased body weight, high-density lipoprotein cholesterol concentrations and basa l insulin sensitivity in muscle. There were 21 transc ripts common to the sets of 303 transcripts in kidney and 487 in heart showing >1.2-fold difference in expression between SHR and SHR - Dca. Tumor necrosis factor was the most significant upstream regulato r and glial cell-derived neurotrophic factor family ligand-receptor interactions was the common enriched and downregulated canonical pathway both in heart and kidney of SHR - Dca. The connexin 50 mutation L7Q lowers blood pressure in the SHR - Dca strain, decr eases high-density lipoprotein cholesterol, and leads to substantial transcriptome changes in heart and kidney., O. Šeda, F. Liška, M. Pravenec, Z. Vernerová, L. Kazdová, D. Křenová, V. Zídek, L. Šedová, M. Krupková, V. Křen., and Obsahuje bibliografii
Increased levels of plasma cysteine predispose to obesity and metabolic disturbances. Our recent genetic analyses in spontaneously hypertensive rats (SHR) revealed mutated Folr1 (folate receptor 1) on chromosome 1 as a quantitative trait gene associated with reduced folate levels, hypercysteinemia and metabolic disturbances. The Folr1 gene is closely linked to the Folh1 (folate hydrolase 1) gene which codes for an enzyme involved in the hydrolysis of dietary polyglutamyl folates in the intestine. In the current study, we obtained evidence that Folh1 mRNA of the BN (Brown Norway) origin is weakly but significantly expressed in the small intestine. Next we analyzed the effects of the Folh1 alleles on folate and sulfur amino acid levels and consecutively on glucose and lipid metabolism using SHR-1 congenic sublines harboring either Folr1 BN and Folh1 SHR alleles or Folr1 SHR and Folh1 BN alleles. Both congenic sublines when compared to SHR controls, exhibited significantly reduced folate clearance and lower plasma cysteine and homocysteine levels which was associated with significantly decreased serum glucose and insulin concentrations and reduced adiposity. These results strongly suggest that, in addition to Folr1 , the Folh1 gene also plays an important role in folate and sulfur amino acid levels and affects glucose and lipid metabolism in the rat., J. Šilhavý, J. Krijt, J. Sokolová, V. Zídek, P. Mlejnek, M. Šimáková, V. Škop, J. Trnovská, O. Oliyarnyk, I. Marková, M. Hüttl, H. Malínská, L. Kazdová, F. Liška, V. Kožich, M. Pravenec., and Obsahuje bibliografii
Cold exposure of rats leads to ameliorated glucose and triglyceride utilization with fema les displaying better adaptation to a cold environment. In the current study, we used hairless rats as a model of increased thermo genesis and analyzed gender- related effects on parameters of lipid and glucose metabolism in the spontaneously hypertensive (SHR) rats. Specifically, we compared hairless coisogenic SHR- Dsg4 males and females harboring mutant Dsg4 (desmoglein 4) gene versus their SHR wild type controls. Two way ANOVA showed significant Dsg4 genotype (hairless or wild type) x gender interaction effects on palmitate oxidation in brown adipose tissue (BAT), glucose incorporation into BAT determined by microPET, and glucose oxidation in skeletal muscles. In addition, we observed significant interaction effects on sensitivity of muscle tissue to insulin action when Dsg4 genotype affected these metabolic traits in males, but had little or no effects in females. Both wild type and hairless females and hairless males showed increased glucose incorporation and palmitate oxid ation in BAT and higher tissue insulin sensitivity when compared to wild type males. These findings provide evidence for gender-related differences in metabolic adaptation required for increased thermogenesis. They are consistent with the hypothesis that increased glucose and palmitate utilization in BAT and muscle is associated with higher sensitivity of adipose and muscle tissues to insulin action, J. Trnovská, J. Šilhavý, V. Zídek, M. Šimáková, P. Mlejnek, V. Landa, S. Eigner, K. Eigner Henke, V. Škop, O. Oliyarnyk, L. Kazdová, T. Mráček, J. Houštěk, M. Pravenec., and Obsahuje bibliografii
Total genome scans of genetically segregating populations derived from spontaneously hypertensive rats (SHR) and other rat models of essential hypertension suggested a presence of quantitative trait loci (QTL) regulating blood pressure on multiple chromosomes, including chromosome 5. The objective of the current study was to test directly a hypothesis that chromosome 5 of the SHR carries a blood pressure regulatory QTL. A new congenic strain was derived by replacing a segment of chromosome 5 in the SHR/Ola between the D5Wox20 and D5Rat63 markers with the corresponding chromosome segment from the normotensive Brown Norway (BN/Crl) rat. Arterial pressures were directly monitored in conscious, unrestrained rats by radiotelemetry. The transfer of a segment of chromosome 5 from the BN strain onto the SHR genetic background was associated with a significant decrease of systolic blood pressure, that was accompanied by amelioration of renal hypertrophy. The heart rates were not significantly different in the SHR compared to SHR chromosome 5 congenic strain. The findings of the current study demonstrate that gene(s) with major effects on blood pressure and renal mass exist in the differential segment of chromosome 5 trapped within the new SHR.BN congenic strain., M. Pravenec, V. Křen, D. Křenová, V. Zídek, M. Šimáková, A. Musilová, J. Vorlíček, E. St. Lezin, T. W. Kurtz., and Obsahuje bibliografii
Increased levels of plasma cysteine are associated with obesity and metabolic disturbances. Our recent genetic analyses in spontaneously hypertensive rats (SHR) revealed a mutated Folr1 (folate receptor 1) as the quantitative trait gene associated with diminished renal Folr1 expression, lower plasma folate levels, hypercysteinemia, hyperhomocysteinemia and metabolic disturbances. To further analyse the effects of the Folr1 gene expression on folate metabolism, we used mass spectrometry to quantify folate profiles in the plasma and liver of an SHR-1 congenic strain, with wild type Folr1 allele on the SHR genetic background, and compared them with the SHR strain. In the plasma, concentration of 5-methyltetrahydrofolate (5mTHF) was significantly higher in SHR-1 congenic rats compared to SHR (60±6 vs. 42±2 nmol/l, P<0.01) and 5mTHF monoglutamate was the predominant form in both strains (>99 % of total folate). In the liver, SHR-1 congenic rats showed a significantly increased level of 5mTHF and decreased concentrations of dihydrofolate (DHF), tetrahydrofolate (THF) and formyl-THF when compared to the SHR strain. We also analysed the extent of folate glutamylation in the liver. Compared with the SHR strain, congenic wild-type Folr1 rats had significantly higher levels of 5mTHF monoglutamate. On the other hand, 5mTHF penta- and hexaglutamates were significantly higher in SHR when compared to SHR-1 rats. This inverse relationship of rat hepatic folate polyglutamate chain length and folate sufficiency was also true for other folate species. These results strongly indicate that the whole body homeostasis of folates is substantially impaired in SHR rats compared to the SHR-1 congenic strain and might be contributing to the associated metabolic disturbances observed in our previous studies., M. Pravenec, K.-Y. Leung, V. Zídek, P. Mlejnek, M. Šimáková, J. Šilhavý, V. Kožich, N. D. E. Greene., and Obsahuje bibliografii
It has been suggested that thiazolidinediones (TZDs) ameliorate insulin resistance in muscle tissue by suppressing muscle lipid storage and the activity of novel protein kinase C (nPKC) isoforms. To test this hypothesis, we analyzed long-term metabolic effects of pioglitazone and the activation of nPKC-ε and -θ isoforms in an animal model of the metabolic syndrome, the spontaneously hypertensive rat (a congenic SHR strain with wild type Cd36 gene) fed a diet with 60 % sucrose from the age of 4 to 8 months. Compared to untreated controls, pioglitazone treatment was associated with significantly increased basal (809±36 vs 527±47 nmol glucose/g/2h, P<0.005) and insulinstimulated glycogenesis (1321±62 vs 749±60 nmol glucose/g/2h, P<0.0001) in isolated gastrocnemius muscles despite increased concentrations of muscle triglycerides (3.83±0.33 vs 2.25±0.12 μmol/g, P<0.005). Pioglitazone-treated rats exhibited significantly increased membrane/total (cytosolic plus membrane) ratio of both PKC-ε and PKC-θ isoforms compared to untreated controls. These results suggest that amelioration of insulin resistance after long-term pioglitazone treatment is associated with increased activation of PKC-ε and -θ isoforms in spite of increased lipid concentration in skeletal muscles., I. Marková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The objective of the current study was to search for genetic determinants associated with antihypertensive effects of angiotensin-converting enzyme (ACE) inhibitor captopril. Linkage and correlation analyses of captopril-induced effects on blood pressure (BP) with renal transc riptome were performed in the BXH/HXB recombinant inbred (RI) strains derived from spontaneously hypertensive rat (SHR) and Brown Norway (BN-Lx) progenitors. Variability of blood pressure lowering effects of captopril among RI strains was continuous suggesting a polygenic mode of inheritance. Linkage analysis of captopril- induced BP effects revealed a significant quantitative trait locus (QTL) on chromosome 15. This QTL colocalized with cis regulated expression QTL (eQTL) for the Ednrb (endothelin receptor type B) gene in the kidney (SHR allele was associated with increased renal expression) and renal expression of Ednrb correlated with captopril-induced BP effects. These results suggest that blood pressure lowering effects of ACE inhibitor captopril may be modulated by the variants at the Ednrb locus., J. Zicha ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension an d accompanying metabolic disturbances. Recent advances in sequencing of genomes of BN- Lx and SHR progenitors of the BXH/HXB recombinant inbred (RI) strains as well as ac cumulation of multiple data sets of intermediary phenotypes in the RI strains, including mRNA and microRNA abundance, quantitative metabolomics, proteomics, methylomics or histone modifications, will make it possible to systematically search for genetic variants involved in regulation of gene ex pression and in the etiology of complex pathophysiological traits. New advances in manipulation of the rat genome, including e fficient transgenesis and gene targeting, will enable in vivo functional analys es of selected candidate genes to identify QTL at the molecular level or to provide insight into mechanisms whereby targeted genes affect pathophysiological traits in the SHR., M. Pravenec ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy