The biochemical model of excitation-contraction coupling in cardiomyocyte is presented and the validity of simulations of both physiological and pathological processes is discussed. The model of regulatory and actomyosin subsystems, even if it is rather simple in its regulatory subunit, gives results well consistent with experimental data. Specifically, intracellular free calcium levels ([Ca2+]i) were computed under various states of sarcoendoplasmic reticular Ca2+-ATPase (SERCA2) and compared to experimental findings. Computed results reproduced well both the increase in resting [Ca2+]i level and the attenuation of [Ca2+]i decline commonly observed in heart failure. Thus the computational simulations could help to identify core relations in studied systems by comparing results obtained using similar models of various complexities., M. Mlček, J. Neumann, O. Kittnar, V. Novák., and Obsahuje bibliografii
In the article, the actions of homocysteine (Hcys) and its metabolite - cyclic thioester – homocysteine thiolactone (HTL) on complex process of hemostasis, which regulates the flowing properties of blood, are described. Possible interaction of Hcys and HTL with endothelial cells, blood platelets, plasmatic fibrinogen and plasminogen, as the important major components of hemostasis are also discussed. The modification of hemostatic proteins (N-homocysteinylated or S-homocysteinylated proteins) induced by Hcys or its thiolactone, and links of homocysteine or homocysteine thiolactone to •NO metabolism seem to be the main reason of biotoxicty of homocysteine in cardiovascular diseases., K. Karolczak, B. Olas., and Obsahuje seznam literatury
More than 50 % of end-stage renal disease (ESRD) patients treated by chronic hemodialysis die from cardiovascular diseases, including congestive heart failure (CHF). The incidence of CHF is rising in both general and ESRD population. However, the mechanisms, which lead to the development of CHF in dialyzed patients, differ considerably. First, there are several factors leading to increase of the left ventricular afterload: volume overload between dialyses, hypertension, increased arterial stiffness, anemia, vascular access flow (arteriovenous fistula) and sympathetic activation. Second, hypertension, left ventricular hypertrophy, anemia and frequently present coronary artery disease worsen myocardial oxygenation. The combination of these factors explains the high incidence of CHF in dialyzed patients and their roles are reviewed in this article., J. Malík ... [et al.]., and Obsahuje seznam literatury
The aim of this study is to show how the emotions - in particular the so-called "passions of the soul" - were understood and interpreted in the medical thinking of the late Enlightenment. We focus chiefly on three innovations in 18th century medicine: the "discovery" of the neuro-cerebral system (the ’birth’ of neurology); the search for the "seat" of illnesses in particular organs (the "birth" of pathological anatomy); and the gradual separation of the body and the soul as objects of medical enquiry (the "birth of psychiatry). We consider whether, and to what extent, these innovations contributed to the breakdown of the "old" diagnostic paradigms of the "passions of the soul", or whether in fact they helped to maintain them. We also discuss to what extent the consideration of these passions fostered a new approach to the relationship between the body and the soul in Enlightenment medicine. Some of the phenomena studied are illustrated by specific examples of (erotic) love and melancholy. and Obsahuje bibliografické odkazy
Hypertenze závislá na soli patří mezi nejčastější rizikové faktory kardiovaskulárních onemocnění. U většiny případů je příčina tohoto onemocnění neznámá, avšak významný podíl hypertenzních jedinců citlivých k soli má zvýšené hladiny mineralokortikoidů. V tomto přehledném článku popisujeme hemodynamické abnormality a mechanismy odpovědné za vývin této formy hypertenze., Salt-dependent hypertension is a leading cause of cardiovascular diseases. In most cases, the etiology is unknown, but it has been estimated that a significant percentage of salt-sensitive hypertensive individuals have mineralocorticoid excess. In this review, we describe hemodynamic abnormalities and mechanisms responsible for initiation of this form of hypertension., and Michal Pravenec.
Salusin-β is newly identified bioactive peptide of 20 amino acids, which is widely distributed in hematopoietic system, endocrine system, and the central nervous system (CNS). Although salusin- β extensively expressed in the CNS, the central cardiovascular functions of salusin-β are unclear. Our main objective was to determine the cardiovascular effect of microinjection of salusin-β into the nucleus tractus solitarii (NTS) in anesthetized rats. Bilateral or unilateral microinjection of salusin-β (0.94-94 μg/rat) into the NTS dose-dependently decreased blood pressure and heart rate. Bilateral NTS microinjection of salusin-β (9.4 μg/rat) did not alter baroreflex sensitivity. Prior application of the glutamate receptor antagonist kynurenic acid (0.19 μg/rat, n=9) into the NTS did not alter the salusin-β (9.4 μg/rat) induced hypotension and bradycardia. However, pretreatment with the GABA receptor agonist muscimol (0.5 ng/rat) within the rostral ventrolateral medulla (RVLM) completely abolished the hypotension (-14±5 vs. -3±5 mm Hg, P <0.05) and bradycardia (-22±6 vs. -6±5 bpm, P <0.05) evoked by intra-NTS salusin-β (9.4 μg/rat). In addition, we found that vagotomy didn’t influence the actions of salusin-β (9.4 μg/rat) in the NTS. In conclusion, our present study shows that microinjection of salusin-β into the NTS significantly produces hypotension and bradycardia, presumably by suppressing the activities of presympathetic neurons in the RVLM., Y. Lu, Y. S. Wu, D. S. Chen, M. M. Wang, W. Z. Wang, W. J. Yuan., and Obsahuje bibliografii
In most macrovascular endothelial cell (EC) preparations, resting membrane potential is determined by the inwardly rectifying K+ current (IK1), whereas in microvascular EC the presence of IK1 varies markedly. Cultured microvascular EC from small vessels of human omentum were examined by means of the voltage-clamp technique to elucidate the putative role of IK1 in maintaining resting membrane potential. Macrovascular EC from human iliac artery and bovine aorta served as reference. Human omentum EC showed an outwardly rectifying current-voltage relation. Inward current was hardly sensitive to variations of extracellular [K+] and Ba2+ block suggesting lack of IK1. However, substitution of extracellular [Na+] and/or [Cl-] affected the current-voltage relation indicating that Na+ and Cl- contribute to basal current. Furthermore, outward current was reduced by tetraethylammonium (10 mM), and cell-attached recordings suggested the presence of a Ca2+-activated K+ current. In contrast to human omentum EC, EC from human iliac artery and bovine aorta possessed inwardly rectifying currents which were sensitive to variations of extracellular [K+] and blocked by Ba2+. Thus, the lack of IK1 in human omentum EC suggests that resting membrane potential is determined by Na+ and Cl- currents in addition to K+ outward currents., H. M. Himmel, U. Rauen, U. Ravens., and Obsahuje bibliografii
Numerous countermeasures have been proposed to minimize microgravity-induced physical deconditioning, but their benefits are limited. The present study aimed to investigate whether personalized aerobic exercise based on artificial gravity (AG) mitigates multisystem physical deconditioning. Fourteen men were assigned to the control group (n=6) and the countermeasure group (CM, n=8). Subjects in the CM group were exposed to AG (2 Gz at foot level) for 30 min twice daily, during which time cycling exercise of 80-95 % anaerobic threshold (AT) intensity was undertaken. Orthostatic tolerance (OT), exercise tests, and blood assays were determined before and after 4 days head-down bed rest (HDBR). Cardiac systolic function was measured every day. After HDBR, OT decreased to 50.9 % and 77.5 % of pre-HDBR values in control and CM groups, respectively. Exercise endurance, maximal oxygen consumption, and AT decreased to 96.5 %, 91.5 % and 91.8 % of pre-HDBR values, respectively, in the control group. Nevertheless, there were slight changes in the CM group. HDBR increased heart rate, sympathetic activity, and the pre-ejection period, but decreased plasma volume, parasympathetic activity and left-ventricular ejection time in the control group, whereas these effects were eliminated in the CM group. Aldosterone had no change in the control group but increased significantly in the CM group. Our study shows that 80-95 % AT aerobic exercise based on 2 Gz of AG preserves OT and exercise endurance, and affects body fluid regulation during short-term HDBR. The underlying mechanisms might involve maintained cardiac systolic function, preserved plasma volume, and improved sympathetic responses to orthostatic stress., X.-T. Li, C.-B. Yang, Y.-S. Zhu, J. Sun, F. Shi, Y.-C. Wang, Y. Gao, J.-D. Zhao, X.-Q. Sun., and Obsahuje bibliografii
Taking into consideration the biological importance of interaction between antioxidant defense (AD) enzymes and sexual steroid hormones it was deemed important to compare our recent achievements in the field with the state of current knowledge. The main goal of the present review was to investigate the changes of AD enzyme activities: superoxide dismutases, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase in the brain of female and male rats depending on progesterone and estradiol. These ovarian steroids produce their effects by acting on numerous target tissues and organs, such as the reproductive organs, bone tissue and cartilage, peripheral blood vessels and the central nervous system (CNS). We have chosen it as a new parameter that might represent an important indicator of the changes within the CNS, bearing in mind the biological importance of the enzymes of the AD system. Our experimental results indicate that the AD enzyme activities in the brain tissue of female and male rats show a certain dependence on the concentration of progesterone and estradiol. The present review suggests that the modulation of the oxidative and antioxidative capacity by sexual steroid hormones is mediated through antioxidant metabolizing enzymes., S. B. Pajović, Z. S. Saičić., and Obsahuje bibliografii a bibliografické odkazy