ECM is composed of different collagenous and non-collagenous proteins. Collagen nanofibers play a dominant role in maintaining the biological and structural integrity of various tissues and organs, including bone, skin, tendon, blood vessels, and cartilage. Artificial collagen nanofibers are increasingly significant in numerous tissue engineering applications and seem to be ideal scaffolds for cell growth and proliferation. The modern tissue engineering task is to develop three-dimensional scaffolds of appropriate biological and biomechanical properties, at the same time mimicking the natural extracellular matrix and promoting tissue regeneration. Furthermore, it should be biodegradable, bioresorbable and non-inflammatory, should provide sufficient nutrient supply and have appropriate viscoelasticity and strength. Attributed to collagen features mentioned above, collagen fibers represent an obvious appropriate material for tissue engineering scaffolds. The aim of this minireview is, besides encapsulation of the basic biochemical and biophysical properties of collagen, to summarize the most promising modern methods and technologies for production of collagen nanofibers and scaffolds for artificial tissue development., L. Koláčná, J. Bakešová, F. Varga, E. Košťáková, L. Plánka, A. Nečas, D. Lukáš, E. Amler, V. Pelouch., and Obsahuje bibliografii
Spinal cord injury results in a permanent neurological deficit due to tissue damage. Such a lesion is a barrier for “communication” between the brain and peripheral tissues, effectors as well as receptors. One of the primary goal s of tissue engineering is to bridge the spinal cord injury and re-establish the damaged connections. Hydrogels are biocompatible implants used in spinal cord injury repair. They can create a permissive environment and bridge the lesion cavities by providing a scaffold for the regeneration of neurons and their axons, glia and other tissue elements. The advantage of using artificial materials is the possibility to modify their physical and chemical properties in order to develop the best implant suitable for spinal cord injury repair. As a result, several types of hydrogels have been tested in experimental studies so far. We review our work that has been done during the last 5 years with various types of hydrogels and their applications in experimental spinal cord injury repair., A. Hejčl, P. Lesný, M. Přádný, J. Michálek, P. Jendelová, J. Štulík, E. Syková., and Obsahuje bibliografii a bibliografické odkazy
Noble gases are known for their inertness. They do not react chemically with any element at normal temperature and pressure. Through that, some of them are known to be biologically active by their sedative, hypnotic and analgesic properties. Common inhalation anesthetics are characterized by some disadvantages (toxicity, decreased cardiac output, etc). Inhalation of xenon introduces anesthesia and has none of the above disadvantages, hence xenon seems to be the anesthetic gas of the future (with just one disadvantage - its cost). It is known that argon has similar anesthetic properties (under hyperbaric conditions), which is much cheaper and easily accessible. The question is if this could be used in clinical practice, in anesthesia of patients who undergo treatment in the hyperbaric chamber. Xenon was found to be organ-protective. Recent animal experiments indicated that xenon decreases infarction size after ischemic attack on brain or heart. The goal of our study is to check if hyperbaric argon has properties similar to those of xenon., J. Růžička, J. Beneš, L. Bolek, V. Markvartová., and Obsahuje bibliografii
Selenium is a trace element that is essential for living organism. Its beneficial effect is, however, expressed in a very narrow dosage range: the high and low doses of selenium are connected with pathological manifestations. The toxicity depends on the chemical form of selenium, state of organism, interactions with heavy metals and on the stage of ontogenetic development. Whereas one dose of sodium selenite (20 μmol/kg b.w.) is lethal in adult rats, suckling rats are entirely resistant. However, within one week after administration of the same dose, cataract of eye lens developed. The highest incidence of cataract was observed in 10-day-old animals and it decreased until day 20. From postnatal day 20 to day 40 the rats were resistant to both the lethal and cataractogenic effects of selenium. The incidence of cataract may be suppressed by premature weaning, lower hydration of suckling, change of water soluble/water insoluble lens protein ratio, thyroxine treatment, and by interaction with mercury. By means of its oxidative and reduction properties, selenium is involved in the maintenance of the cell redox homeostasis. Typical example is its possible cardioprotective effect: selenium decreased number of arrhythmias, reduced infarct size and improved the contractile recovery after ischemia/reperfusion injury. Selenium supplementation may thus increase cardiac tolerance to ischemic damage., I. Ošťádalová., and Obsahuje seznam literatury
A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes., J. Beneš, P. Šunka, J. Králová, J. Kašpar, P. Poučková., and Obsahuje bibliografii
Obesity is a strong cardiometabolic (CM) risk factor in children. We tested potential CM risk in obese/overweight children and the effect of an intensive lifestyle intervention using newer CM markers: atherogenic index of plasma AIP [Log(TG/HDL-C)], apoB/apoAI ratio and a marker of insulin resistance HOMA-IR. The participants (194 girls, 115 boys, average age 13) were enrolled in an intensive, one-month, inpatient weight reduction program. The program consisted of individualised dietary changes and the exercise program comprised aerobic and resistance training. Anthropometrical and biochemical parameters in plasma and CM risk biomarkers - (AIP, apoB/apoAI ratio and HOMA-IR) were examined before and after the intervention. AIP and HOMA-IR significantly correlated with BMI while apoB/apoAI ratio did not. Only AIP and HOMA-IR showed systematic increases according to the level of obesity by BMI quartiles. Lifestyle intervention significantly improved anthropometrical and biochemical values and the biomarkers too. The response of lipid parameters to the intervention was considerably higher in boys than in girls. The children were stratified into three risk categories according to AIP, where 13.8 % of boys and 5.3 % of girls fell into high risk category. The monitored biomarkers may complement each other in the prognosis of CM risk. AIP was strongly related to obesity and to lipid and glycid metabolism, while the relationship of the apoB/apoAI ratio to obesity and glycid metabolism was not significant. The obese children benefited from the intensive lifestyle intervention which improved the anthropometrical and biochemical parameters and CM risk biomarkers., M. Vrablík, M. Dobiášová, L. Zlatohlávek, Z. Urbanová, R. Češka., and Obsahuje bibliografii
Pneumatic tourniquets are widely used in pediatric extremity surgery to provide a bloodless field and facilitate dissection. This prospective study was carried out to examine possible effect of different anesthesia techniques on oxidative stress and endothelial dysfunction connected with ischemia-reperfusion injury during extremity operations at children's age. Patients were randomized into three groups of 15 patients each: general inhalational anesthesia with sevoflurane (group S), total intravenous anesthesia with propofol (group T) and regional anesthesia (group R). Venous blood samples for determination of the malondialdehyde in plasma and erythrocytes, protein carbonyl groups concentration as well as plasma nitrites and nitrates level and xanthine oxidase activity were obtained at four time points: be fore peripheral nerve block and induction of general anesthesia (baseline), 1 min before tourniquet release, 5 and 20 min after tourniquet release. This study demonstrates that total intravenous anesthesia with propofol and regional anesthesia techniques provide better antioxidant defense and reduce endothelial dysfunct ion than general inhalational anesthesia with sevoflurane during tourniquet application in pediatric extremity surgery., I. Budic ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Hospitalized patients in internal medicine have an increased risk of low physical reserve which further declines during the hospital stay. The diagnosis requires bed-side testing of functional domains or more complex investigations of the muscle mass. Clinically useful biomarkers of functional status are needed, thus we aimed to explore the potential of microRNAs. Among hospitalized patients, we recorded the basic demographics, anthropometrics, nutritional status, and physical function domains: hand-grip strength (HGS, abnormal values M<30 kg, W<20 kg), balance (<30 s), chair-stands speed (CHSS<0.5/s) and gait speed (GS<0.8 m/s). A panel of five micro-RNAs (miRNA 1, miRNA 133a, miRNA 133b, miRNA 29a, miRNA 29b) and basic blood biochemistry and vitamin D values were recorded. We enrolled 80 patients (M40, W40), with a mean age of 68.8± 8.4 years. Obesity was observed in 27.5 % and 30 %, low HGS and low CHSS in 65.0, 77.5 %, and 80, 90 % of men and women respectively. The median hospital stay was 6.5 days. MiRNA29a and miRNA29b have the strongest correlation with the triceps skinfold (miRNA 29b, r=0.377, p=0.0006) and CHSS (miRNA 29a, r=0.262, p=0.02). MiRNA 29a, miRNA 29b and 133a levels were significantly higher in patients with CHSS<0.5/s. Other anthropometric parameters, mobility domains, or vitamin D did not correlate. All miRNAs except of miRNA 1, could predict low CHSS (miRNA29b, AUROC=0.736 CI 0.56-0.91, p=0.01), particularly in patients with low HGS (miRNA 29b, AUROC=0.928 CI 0.83-0.98). Among hospitalized patients in internal medicine, low functional status was frequent. MicroRNAs were fair biomarkers of the antigravity domain, but not other domains. Larger studies with clinical endpoints are needed., Petra Vrbová, Simona Valášková, Andrea Gažová, Juraj Smaha, Martin Kužma, Ján Kyselovič, Juraj Payer, Tomáš Koller., and Obsahuje bibliografii
The present article introduces a novel method of characterizing the macromechanical cartilage properties based on dynamic testing. The proposed approach of instrumented impact testing shows the possibility of more detailed investigation of the acting dynamic forces and corresponding deformations within the wide range of strain rates and loads, including the unloading part of stress-strain curves and hysteresis loops. The presented results of the unconfined compression testing of both the native joint cartilage tissues and potential substitute materials outlined the opportunity to measure the dissipation energy and thus to identify the initial mechanical deterioration symptoms and to introduce a better definition of material damage. Based on the analysis of measured specimen deformation, the intact and pathologically changed cartilage tissue can be distinguished and the differences revealed., F. Varga, M. Držík, M. Handl, J. Chlpík, P. Kos, E. Filová, M. Rampichová, A. Nečas, T. Trč, E. Amler., and Obsahuje bibliografii
Diabetes is a recognized risk factor of heart disease. The abnormalities related to a decreased heart performance probably arise at cellular and molecular levels already in the asymptomatic phase of diabetes. However, the early alterations initiating a sequence of events that culminates in the clinical signs have not been fully elucidated yet. This review deals with some biophysical methods applied to investigation of left ventricular myocytes in rats with streptozotocin diabetes, as well as our most important findings concerning diabetes-induced cell changes which cannot be captured by other techniques. The observed decrease in sarcolemmal membrane fluidity is causatively associated with increased glycation and glycoxidation. On the other hand, an increase in the mitochondrial membrane fluidity may be attributed to augmented energy transduction through the membranes. We reported for the first time concurrent measurements of membrane potential and dynamics, and respiratory chain activities in rat heart mitochondria, as well as calcium transients in the myocytes from diabetic hearts together with the assessed quantitative relationships among these variables. We were able to detect some significant alterations that may underlie myocyte dysfunction and subsequent remodeling of the heart. We suppose that not all these changes reflect mechanisms leading to pathology; some may represent adaptive and compensatory responses to diabetes., I. Waczulíková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy