The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, t here is no direct evidence clearly illustrating the involvement of these transmembr ane regions in the actual CFTR pore structure. To obtain insight into the architecture of the CFTR channel pore, we used patch clamp recording techniques and a strategy of comutagenesis of two potential pore-forming transmembrane regions (TM1 and TM6) to investigate the collaboration of these two TM regions. We performed a range of specific functional assays comparing the single channel conductance, anion binding, and anion selectivity properties of the co -mutated CFTR variants, and the results indicated that TM1 and TM6 play vital roles in forming the channel pore and, thus, determine the functional properties of the channel. Furthermore, we provide d functional evidence that the amino acid threonine (T338) in TM6 has synergic effects with lysine (K95) in TM1. Therefore, we propose that these two residues have functional collaboration in the CFTR channel pore and may collectively form a selective filter ., F. Qian, L. Liu, Z. Liu, C. Lu., and Obsahuje bibliografii
We explored the effect of chronically elevated circulating levels of growth hormone (GH)/insulin -like -growth- factor-1 (IGF-1) on mRNA expression of GH/IGF-1/insulin axis components and p85alpha subunit of phosphoinositide -3-kinase (p85alpha) in subcutaneous adipose tissue (SCAT) of patients with active acromegaly and compared these findings with healthy control subjects in order to find its possible relationships with insulin resistance and body composition changes. Acromegaly group had significantly decreased percenta ge of truncal and whole body fat and increased homeostasis model assessment-insulin resistance (HOMA -IR). In SCAT, patients with acromegaly had significantly increased IGF-1 and IGF -binding protein-3 (IGFBP-3) expression that both positively correlated wit h serum GH. P85alpha expression in SCAT did not differ from control group. IGF-1 and IGFBP-3 expression in SCAT were not independently associated with percentage of truncal and whole body fat or with HOMA -IR while IGFBP -3 expression in SCAT was an independ ent predictor of insulin receptor as well as of p85alpha expression in SCAT. Our data suggest that GH overproduction in acromegaly group increases IGF-1 and IGFBP-3 expression in SCAT while it does not affect SCAT p85alpha expression. Increased IGF-1 or IGFBP-3 in SCAT of acromegaly group do not appear to contribute to systemic differences in insulin sensitivity but may have local regulatory effects in SCAT of patients with acromegaly., V. Touskova, J. Klouckova, V. Durovcova, Z. Lacinova, P. Kavalkova, P. Trachta, M. Kosak, M. Mraz, D. Haluzikova, V. Hana, J. Marek, M. Krsek, M. Haluzik., and Obsahuje bibliografii
Recent studies focused on epicardial fat, formerly relatively neglected component of the heart, have elucidated some of its key roles. It possesses several properties that can distinguish it from other adipose tissue depots. Its unique anatomical location in the heart predisposes the epicardial fat to be an important player in the physiological and biochemical regulation o f cardiac homeostasis. Obesity is associated with an increase in epicardial fat mass. Excess of cardiac fat can contribute to greater left ventricular mass and work, diastolic dysfunction and attenuated septal wall thickening. Imbalance in adipokines levels secreted in autocrine or paracrine fashion by epicardial fat can contribute to the activation of the key atherogenic pathways in the setting of metabolic syndrome. Epicardial fat has also been identified as an important source of pro-inflammatory mediato rs worsening endothelial dysfunction, eventually leading to coronary artery disease. Increased production of pro-inflammatory factors by epicardial fat can also contribute to systemic insulin resistance in patients undergoing cardiac surgery. Here we revie w the most important roles of epicardial fat with respect to heart disease in the context of other underlying pathologies such as obesity and type 2 diabetes mellitus., Z. Matloch, T. Kotulák, M. Haluzík., and Obsahuje bibliografii
Protease-activated receptors (PARs) belong to the G-proteincoupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and in the development of chronic pain states. This short review focuses on the role of PAR2 receptors in nociceptive transmission with the emphasis on the modulation at the spinal cord level. PAR2 are cleaved and subsequently activated by endogenous proteases such as tryptase and trypsin. In vivo, peripheral and intrathecal administration of PAR2 agonists induces thermal and mechanical hypersensitivity that is thought to be mediated by PAR2-induced release of pronociceptive neuropeptides and modulation of different receptors. PAR2 activation leads also to sensitization of transient receptor potential channels (TRP) that are crucial for nociceptive signaling and modulation. PAR2 receptors may play an important modulatory role in the development and maintenance of different pathological pain states and could represent a potential target for new analgesic treatments., P. Mrozkova, J. Palecek, D. Spicarova., and Obsahuje bibliografii
Deformability of red blood cells (RBC) is the ability of RBC to change their shape in order to pass through narrow capillaries in circulation. Deterioration in deformability of RBC contributes to alterations in microcirculatory blood flow and delivery of oxygen to tissues. Several factors are responsible for maintenance of RBC deformability. One of them is the Na,K-ATPase known as crucial enzyme in maintenance of intracellular ionic homeostasis affecting thus regulation of cellular volume and consequently RBC deformability. Decreased deformability of RBC has been found to be the marker of adverse outcomes in cardiovascular diseases (CVD) and the presence of cardiovascular risk factors influences rheological properties of the blood. This review summarizes knowledge concerning the RBC deformability in connection with selected risk factors of CVD, including hypertension, hyperlipidemia, and diabetes mellitus, based exclusively on papers from human studies. We attempted to provide an update on important issues regarding the role of Na,K-ATPase in RBC deformability. In patients suffering from hypertension as well as diabetes mellitus the Na,K-ATPase appears to be responsible for the changes leading to alterations in RBC deformability. The triggering factor for changes of RBC deformability during hypercholesterolemia seems to be the increased content of cholesterol in erythrocyte membranes., J. Radosinska, N. Vrbjar., and Obsahuje bibliografii
Intrahepatic cholestasis of pregnancy (ICP) is a disorder of liver function, commonly occurring in the third trimester but sometimes also as soon as the end of the second trimester of pregnancy. Symptoms of this disorder include pruritus, plus abnormal values of bile acids and hepatic transaminases. After birth, symptoms disappear and liver function returns to normal. Though ICP is relatively non-complicated and often symptomatically mild from the point-of-view of the mother, it presents a serious risk to the fetus, making this disease the subject of great interest. The etiology and pathogenesis of ICP is multifactorial and as yet not fully elucidated. Hormonal factors likely play a significant role, along with genetic as well as exogenous factors. Here we summarize the knowledge of changes in steroid hormones and their role in the development of intrahepatic cholestasis of pregnancy. In addition, we consider the role of exogenous factors as possible triggers of steroid hormone changes, the relationship between metabolic steroids and bile acids, as well as the combination of these factors in the development of ICP in predisposed pregnant women., A. Pařízek, M. Dušková, L. Vítek, M. Šrámková, M. Hill, K. Adamcová, P. Šimják, A. Černý, Z. Kordová, H. Vráblíková, B. Boudová, M. Koucký, K. Malíčková, L. Stárka., and Obsahuje bibliografii
Dental management behavior problems are thought to be both multifactorial and multidimensional, consisting of physiological, behavioral and cognitive components. The stress response to pain or even the anticipation of distress initiates activation of the hypothalamic-pituitary-adrenal axis and causes an increase of cortisol and catecholamines. The literature on the role of hormones in dental management behavior problems comprises about one hundred papers, which have mainly been focused on this activation of the HPA axis in various situations in dental care. They have generally used salivary cortisol as a marker of the activity of the HPA axis, sometimes combined with salivary alpha amylase. Here we summarize the literature data on the role of stress hormones in dental management behavior problems., M. Dušková, J. Vašáková, J. Dušková, J. Kaiferová, Z. Broukal, L. Stárka., and Obsahuje bibliografii
The mood and behavior of individuals result from an orchestra of many factors. Among them steroids play an important role; however, only several common hormones have been investigated in this respect. It has been demonstrated that some steroid metabolites long considered merely the products of steroid hormone metabolism in fact possess considerable activity in the CNS. For this reason we studied the steroid metabolome including 50 analytes in 20 men with depression, 20 men with anxiety and 30 healthy controls. Significant differences were found not only between controls and men with either depression or anxiety, but also between men with depression and anxiety. Particularly striking were those steroids until now not generally associated with depression or anxiety, namely conjugated steroid forms, especially sulfates., M. Dušková, M. hill, M. Bičíková, M. Šrámková, D. Řípová, P. Mohr, L. Stárka., and Obsahuje bibliografii
Addiction to tobacco results in an imbalance of endocrine homeostasis in both sexes. This can also have impacts on fertility problems. The male reproductive system is less susceptible than that of females, with a worsening spermiogram in smokers, the most cited effect in the literature. However, the literature is inconsistent as to the effects of smoking on steroid hormone levels in men, and there is very little data on the effects of quitting smoking in men. In this study we followed 76 men before quitting smoking, and then after 6, 12, and 24 weeks and 1 year of abstinence. We measured basic anthropomorphic data and steroid hormone levels along with steroid neuroactive metabolites using GC-MS. We demonstrate lower androgen levels in men who smoke, and these changes worsened after quitting smoking. There was a drop in SHBG already in the first week of non-smoking, and levels continued to remain low. Male smokers have lower androgen levels compared to non-smokers. The lower the initial level of androgen, the lower the likelihood of success in quitting smoking. Changes in steroid hormones proved to be a promising marker for the prediction of success in quitting smoking., H. Jandikova, M. Duskova, K. Simunkova, B. Racz, M. Hill, E. Kralikova, K. Vondra, L. Starka., and Obsahuje bibliografii
Patch clamp recordings carried out in the inside-out configuration revealed activity of three kinds of channels: nonselective cation channels, small-conductance K+ channels, and large-conductance anion channels. The nonselective cation channels did not distinguish between Na+ and K+. The unitary conductance of these channels reached 28 pS in a symmetrical concentration of 200 mM NaCl. A lower value of this parameter was recorded for the small-conductance K+ channels and in a 50-fold gradient of K+ (200 mM/4 mM) it reached 8 pS. The high selectivity of these channels to potassium was confirmed by the reversal potential (-97 mV), whose value was close to the equilibrium potential for potassium (-100 mV). One of the features of the large - conductance anion channels was high conductance amounting to 493 pS in a symmetrical concentration of 200 mM NaCl. The channels exhibited three subconductance levels. Moreover, an increase in the open probability of the channels at voltages close to zero was observed. The anion selectivity of the channels was low, because the channels were permeable to both Cl - and gluconate - a large anion. Research on the calcium dependence revealed t hat internal calcium activates nonselective cation channels and small-conductance K+ channels, but not large - conductance anion channels., M. Koselski, A. Olszewska, A. Hordyjewska, T. Małecka-Massalska, K. Trebacz., and Obsahuje bibliografii