Under normal conditions, antioxidants at the corneal surface are balanced with the production of reactive oxygen species without any toxic effects. Danger from oxidative stress appears when natural antioxidants are overwhelmed leading to antioxidant/prooxidant imbalance. The aim of the present study was to examine the activities of enzymes contributing to the antioxidant/prooxidant balance in normal corneal epithelium of various mammals. The enzyme activities of antioxidant superoxide dismutase and glutathione peroxidase, as well as prooxidant xanthine oxidoreductase/xanthine oxidase were examined using biochemical methods. Results show that superoxide dismutase activity is high in rabbits and guinea pigs, whereas in pigs the activity is low and in cows it is nearly absent. In contrast, glutathione peroxidase activity is high in cows, pigs and rabbits, whereas in guinea pigs the activity is low. As far as prooxidant enzymes are concerned, elevated xanthine oxidoreductase/xanthine oxidase activities were found in rabbits, lower activities in guinea pigs, very low activity in cows and no activity in pigs. In conclusion, the above results demonstrate inter-species variations in activities of enzymes participating in antioxidant/prooxidant balance in the corneal epithelium. It is suggested that the levels of antioxidant and prooxidant enzymes studied in the corneal epithelium might be associated with the diurnal or nocturnal activity of animals. UV rays decompose hydrogen peroxide to damaging hydroxyl radicals and perhaps for this reason large animals with diurnal activity (cow, pig) require more effective peroxide removal (high glutathione peroxidase activity) together with the suppression of peroxide production (low superoxide dismutase activity, low xanthine oxidoreductase activity)., J. Kovačeva, J. Pláteník, M. Vejražka, S. Štípek, T. Ardan, Č. Čejka, A. Midelfart, J. Čejková., and Obsahuje bibliografii a bibliografické odkazy
The general population is potentially exposed to many chemicals that can affect the endocrine system. These substances are called endocrine disruptors (EDs), and among them bisphenol A (BPA) is one of the most widely used and well studied. Nonetheless, there are still no data on simultaneous measurements of various EDs along with steroids directly in the seminal fluid, where deleterious effects of EDs on spermatogenesis and steroidogenesis are assumed. We determined levels of BPA and 3 estrogens using LC-MS/MS in the plasma and seminal plasma of 174 men with different degrees of infertility. These men were divided according their spermiogram values into 4 groups: (1) healthy men, and (2) slightly, (3) moderate, and (4) severely infertile men. Estradiol levels differed across the groups and body fluids. Slightly infertile men have significantly higher BPA plasma and seminal plasma levels in comparison with healthy men (p<0.05 and p<0.01, respectively). Furthermore, seminal BPA, but not plasma BPA, was negatively associated with sperm concentration and total sperm count (-0.27; p<0.001 and -0.24; p<0.01, respectively). These findings point to the importance of seminal plasma in BPA research. Overall, a disruption of estrogen metabolism was observed together with a weak but significant impact of BPA on sperm count and concentration., J. Vitku, L. Sosvorova, T. Chlupacova, R. Hampl, M. Hill, V. Sobotka, J. Heracek, M. Bicikova, L. Starka., and Obsahuje bibliografii
Among various C4 plants we found a wide range in the level of inactivation of phosphoenolpyruvate carboxylase (PEPC) at low temperature (0 °C). The activity of the 2-fold diluted enzyme in crude leaf extracts after 60 min incubation (compared to zero time incubation) at pH 7.5, remained above 87 % at low temperatures for the species Setaria verticillata, Portulaca oleracea, and Saccharum officinarum, and between 11 and 17 % in the species Cynodon dactylon and Atriplex halimus. The enzyme exhibited intermediate levels of inactivation (42 to 58 %) for the species Amaranthus sp., Zea mays, Salsola kali, and Digitaria sanguinalis. The enzyme activity for S. verticillata was unaffected between pH 5.7 and 8.4 during incubation at room and low temperatures. Under similar conditions, the activity of the enzyme from C. dactylon was stable between pH 5.7 and 7.0 and decreased at pH above 7.0, but for Z. mays it was enhanced between pH 5.7 and 6.8 and decreased at pH above 7.0. and G. Zervoudakis ... [et al.].
Field gas exchange and water potential in the leaves of a C3 dicot, Plantago asiatica L., and a C4 monocot, Eleusine indica Gaertn., which dominate in trampled vegetation in eastern Japan were surveyed during the growing periods for two consecutive years. Net photosynthetic rate (PN) of E. indica increased with photosynthetic photon flux density (PPFD) and leaf temperature (TL). PN was not saturated at PPFDs above 1500 µmol m-2 s-1 and at TL above 30 °C. On a sunny day in mid summer, maximum PN was two times higher in E. indica than in P. asiatica [42 vs. 20 µmol(CO2) m-2 s-1], but their transpiration rate (E) and the leaf water potential (ΨL) were similar. Soil-to-leaf hydraulic conductance, which probably plays a role in water absorption from the trampled compact soil, was higher in E. indica than in P. asiatica. The differences in photosynthetic traits between E. indica explain why E. indica communities more commonly develop at heavily trampled sites in summer than the P. asiatica communities. and T. Kobayashi, K. Okamoto, Y. Hori.
Differences in leaf δ13C among four dominant species as well as the species-specific response to the fluctuations of either soil moisture or monthly mean temperature were examined along a secondary succession sere with a time scale from 3 to 149 y on the Loess Plateau in north-western China. We used leaf δ13C as a surrogate for water use efficiency (WUE) of the mentioned dominant species. Bothrichloa ischaemun as a dominant species in the final succession stage belongs to C4 photosynthesis pathway, while the other three dominant species occurring in the first three succession stages belong to C3 pathway. The overall trend of leaf δ13C variation among the three C3 species was Artemisia gmelinii (in the third stage) and Lespedeza davurica (in the second stage) > Artemisia scoparia (in the first stage). This suggests that species with higher WUE (more positive leaf δ13C) would have substantial competitive advantages in the context of vegetation succession. Furthermore, species with highest WUE (i.e. C4 pathway) have great potential to be dominant in the final succession stage in the habitats (such as the study area) undergoing strong water stress in growing season. The evolution of WUE among the dominant species occurring in different succession stages strongly depends on the time scale of given stage since abandonment. The longer the time scale is, the more significant the differences among them in terms of leaf δ13C, hence WUE. Our results support the notions that leaf δ13C may be more positive when water supply is less favourable.
The present study examined the hypothesis that the extension of noxious effect of methamphetamine (MA) on maternal behavior and postnatal development on the pups may differ in dependence with time of application. Female rats were injected with MA (5 mg/kg) or saline during first (embryonic day (ED) 1-11) or second (ED 12-22) half of gestation. Our results demonstrated that MA exposure on ED 12-22 led to decreased birth weight and weight gained during lactation period relative to rats treated on ED 1-11. Both sexes treated prenatally with MA on ED 1-11 opened eyes earlier compared to animals treated on ED 12-22. As a matter of sensorimotor development application of MA on ED 1-11 impaired the righting reflex, while MA exposure on ED 12-22 impaired the performance of beam balance test in male rats. There were no differences in maternal behavior. Therefore, it seems that MA exposure in the first half of the gestation impaired the early sensorimotor development that is under control of the brain stem, while the MA exposure in the second half of gestation affected the beam balance performance that is dependent on the function of the cerebellum., M. Malinová-Ševčíková, I. Hrebíčková, E. Macúchová, E. Nová, M. Pometlová, R. Šlamberová., and Obsahuje bibliografii
Type I diabetes mellitus (DM1) is a complex disease with adverse effects on organs and tissues despite compensation by insulin treatment. The goal of our study was to study how kidney diseases change 31P MR parameters of muscle metabolism in DM1 patients with respect to gender. 51 DM1 patients (19 m/14 f without and 13 m/5 f with nephropathy) and 26 (14 m/12 f) healthy volunteers were examined using 31P magnetic resonance spectroscopy at 3T tomograph at rest, and during and after a calf muscle exercise. The exercise consisted of a six-minute plantar flexion using a pedal ergometer followed by a six-minute recovery. It is reflected by reduced relative β-ATP and increased Pi and phosphodiester signals to phosphocreatine (PCr) at rest and prolongation of the PCr recovery time after the exercise. Measurement on healthy volunteers indicated differences between males and females in pH at the rest and after the exercise only. These differences between patients groups were not significant. We have proven that nephropathy affects the metabolism in diabetic patients and our results confirm significant difference between patients with and without nephropathy. Gender differences in pH were observed only between male and female healthy volunteers., P. Sedivy, M. Dezortova, M. Drobny, Z. Vlasakova, V. Herynek, M. Hajek., and Obsahuje bibliografii
In crowns of chestnut trees the absorption of radiant energy is not homogeneous; leaves from the south (S) side are the most irradiated, but leaves from the east (E) and west (W) sides receive around 70 % and those from north (N) face less than 20 % of the S irradiation. Compared to the S leaves, those from the N side were 10 % smaller, their stomata density was 14 % smaller, and their laminae were 21 % thinner. N leaves had 0.63 g(Chl) m-2, corresponding to 93 % of total chlorophyll (Chl) amount in leaves of S side. The ratios of Chl a/b were 2.9 and 3.1 and of Chl/carotenoids (Car) 5.2 and 4.8, respectively, in N and S leaves. Net photosynthetic rate (PN) was 3.9 µmol(CO2) m-2 s-1 in S leaves, in the E, W, and N leaves 81, 77, and 38 % of that value, respectively. Morning time (10:00 h) was the period of highest PN in the whole crown, followed by 13:00 h (85 % of S) and 16:00 h with 59 %. Below 500 µmol m-2 s-1 of photosynthetic photon flux density (PPFD), N leaves produced the highest PN, while at higher PPFD, the S leaves were most active. In addition, the fruits from S side were 10 % larger than those from the N side. and J. Gomes-Laranjo ... [et al.].
Photochemical efficiency, photosynthetic capacity, osmoprotectants, and relative water content (RWC) were recorded in saplings of two evergreen plants (Boehmeria rugulosa Wedd. and Olea glandulifera Wall. ex G. Don) grown inside (GL) and outside (OP) a glasshouse during the winter season. The OP plants experienced 2.0-2.5 °C lower air temperature and dew formation in comparison to GL plants. Diurnal observations indicated no change in RWC in the leaves of GL and OP plants, while significant reduction in both transpiration and net photosynthetic (PN) rates was observed in OP plants: the reduction in PN was much more prominent as was also reflected by poor water use efficiency of these plants. Similarly, OP plants also showed decrease in the apparent quantum yield and irradiance-saturated CO2 assimilation rate. The decrease in PN was not associated with decreased stomatal conductance. However, a significant reduction in the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and Chl content was recorded in the OP plants which also contained more total soluble saccharides but less proline contents. The greater enhancement of PN at 15 °C in comparison to measurements taken at 10 °C in OP plants over GL plants probably indicated an increase in mesophyll capacity of the OP plants' growth at increased temperature. Hence the enhanced growth and productivity of plants grown in sheltered environments could be associated to their higher photosynthetic activity that may have important bearing on their field establishment and productivity in the long run. The response varied with plant species; reduction in PN was greater in B. rugulosa than in O. glandulifera. However, the recovery of OP plants in terms of Fv/Fm in the subsequent months revealed that photosynthetic system of these plants is revocable. and S. C. Joshi, S. Chandra, L. M. S. Palni.
Spontaneously hypertensive rats are the most common animal
model used to study attention deficit hyperactivity disorder
(ADHD). The present study investigated the levels of steroid
hormones in the bloodstream of hypertensive rats and its
normotensive control strain, Wistar-Kyoto rats, to check if there
are any hormonal differences between both strains at the onset
of ADHD. Plasma samples were collected from young (5-weekold) and mature (10-week-old) male hypertensive and
normotensive rats to determine the serum level of testosterone,
17β-estradiol, free estriol, progesterone, corticosterone and
cortisol using ELISA kits. The results showed statistically
significant increases in serum levels of testosterone and free
estriol in 10-week-old hypertensive and normotensive rats when
compared to 5-week-old animals. Moreover, the concentrations
of progesterone, corticosterone and cortisol were significantly
elevated in 10-week-old hypertensive rats when compared to
5-week-old animals of both strains as well as 10-week-old
normotensive rats. Hormonal differences observed between
10-week-old hypertensive and normotensive rats were also
accompanied by differences in the volumes of lateral ventricles as
well as the third ventricle and cerebral aqueduct. In conclusion,
elevated contents of progesterone, corticosterone and cortisol in
hypertensive rats may be associated not only with ADHD but also
with developing hypertension. This question needs further study.