Activation of sublobule IX-b of the cerebellar vermis evokes hypotension, bradycardia and decrease of the phrenic nerve activity in the anesthetized animal. Cardiac performance during the isovolumic phases of systole and relaxation can be evaluated by dP/dt max, Vpm, dP/dt/DP40 and τ, respectively. In the present study, we evaluated the changes on cardiac function evoked by the stimulation of sublobule IX-b. New Zealand white rabbits were anesthetized, paralyzed and artificially ventilated. A posterior craniotomy was made to reveal and stimulate the cerebellar uvula (4 s train; 50 Hz; 1 ms; 20 μA). The femoral artery and veins were cannulated and a Swan-Ganz catheter was advanced in the upper abdominal aorta to control afterload when inflating the balloon. The left ventricle was catheterized with a Millar catheter. Blood pressure, heart rate, left ventricular pressure were monitored. Results showed a significant decrease on sublobule IX-b stimulation of all the indices of systolic function and an increase of τ indicating a decrease in the speed of the relaxation. These data provide the first evidence of the influence of sublobule IX-b on cardiac function. They may contribute to the understanding of the origin the cardiovascular changes that were observed in two patients with vermian and paravermian hemorrhage., I. Rochas, V. Gonçalves, M. J. Bettencourt, L. Silva-Carvalho., and Obsahuje bibliografii a bibliografické odkazy
This study investigates the effects of long-term treatment with sulodexide (SLX) on norepinephrine (NE)-induced contractions, acetylcholine(Ach)-induced relaxations, acute cyclooxygenase blockade by diclofenac (DIC) in isolated femoral arteries (FA) and the parameters of oxidative phosporylation in liver mitochondria. 15-weeks old Wistar rats were divided into four groups: control (C; injected with saline solution), treated control (C+SLX), diabetic (DM) and treated diabetic (DM+SLX). Diabetes was induced with a single i.v. dose of streptozotocin (STZ) 45 mg.kg-1. SLX was administered i.p., at dose 100 IU.kg-1 daily for 5 weeks. Vascular responses of isolated femoral arteries were measured using Mulvany-Halpern myograph. Respiratory function of the mitochondria was determined using voltamperometric method on oxygraph Gilson. In diabetic rats the amplitude of maximal response to NE was elevated. DIC pretreatment decreased the amplitudes of NE-induced contractions in all groups of rats. SLX treatment decreased sensitivity of FA to NE and caused higher relaxatory responses to Ach in C and DM. Oxygen consumption and phosphorylation rates ([QO2(S3)], [QO2(S4)] and (OPR)) and respiratory control ratio (RCR) were decreased in the mitochondria of DM rats. Mitochondria of C rats were not affected with SLX treatment. Administration of SLX in DM rats was associated with increase of RCR, other parameters were not affected. Our findings suggest that SLX treatment might be associated with vasculoprotective effects during diabetes and improvement of mitochondrial function., L. Dobiaš, M. Petrová, R. Vojtko, O. Uličná, O. Vančová, V. Kristová., and Obsahuje bibliografii
The aim of this work was to study the effect of the daily ingestion of a purified anthocyanin extract from red grape skin on rat serum antioxidant capacity (ORAC) and its safety for the intestinal epithelium. The study was carried out in rats orally administered with the extract for 10 days in either normal physiological conditions or exposed to a pro-oxidant chemical (CCl4). The oral administration of the extract significantly (P<0.05) enhanced the ORAC va lue of the deproteinised serum of about 50 % after 10 days of ingestion. Anthocyanin administration was also able to reverse completely the decrease in the serum ORAC activity induced by the CCl4 treatment. Experiments with Ussing chamber mounted intestine allowed to exclude any toxicity of the extract for the intestinal epithelium. In conclusion, our results demonstrate that the purified anthocyanin extract from red grape skin e nhances the total antioxidant capacity of the serum in either normal physiological condition or during oxidative stress induction, revealing a protective role against the decrease in the serum antioxidant capacity induced by a pro-oxidant compound., M. G. Lionetto ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Creatine (Cr) is recommended as a dietary supplement especially for athletes but its therapeutic potential is also discussed. It is assumed that human body uses Cr for the formation of phosphocreatine, which is nece ssary for muscular work as a source of energy. Production of Cr in a body is closely connected to methionine cycle where guanidinoacetate (GAA) is in a final step methylated from S-adenos ylmethionine (SAM). Increased availability of SAM for phosphatidylcholine (PC) and sarcosine synthesis can potentially stimulate endogenous production of betaine a thus methylation of homocysteine (HCy) to form methionine. Our subject who was methylenetetrahydrofolate reductase ( MTHFR ) 677TT homozygote lowered plasma HCy from 33.3 μmol/l to 17.1 μmol/l following one-month Cr supplementation (5 g/day) opposite to 677CC and CT genotypes whose HCy levels tended to increase (but still in normal ranges). We suppose that Cr supplementation stimulates pathways leading to production of sarcosine which can serve to regenerate tetrahydrofolate (THF) to form 5,10-methylene-THF. This could potentially increase MTHFR enzyme activity which may later result in increased HCy methylation. Cr supplementation significantly effects metabolism of one carbon unit and potentially lower body's demands for methyl groups. This could be beneficial as in the case of reduced enzyme activity such as MTHFR 677C/T polymorphism., M. Petr, M. Šteffl, E. Kohlíková., and Obsahuje bibliografii a bibliografické odkazy
The aim of this study was to assess the influence of regular daily consumption of white wine on oxidative stress and cardiovascular risk markers. Forty-two healthy male volunteers consumed 375 ml of white wine daily. Each participant provided three venous blood samples (before wine consumption, following the wine consumption period and again a month later). Levels of superoxide dismutase, glutathione peroxidase, reduced glutathione, total antioxidant capacity, total cholesterol, HDL-cholesterol, apolipoprotein A I, apolipoprotein B, triglycerides, paraoxonase 1, C-reactive protein, homocysteine, thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein products (AOPP) were measured. Immediately following the month of white wine consumption there was a significant increase in HDL-cholesterol (p<0.0001), paraoxonase 1 (p<0.001), glutathione peroxidase (p<0.001) and reduced glutathione (p<0.01) levels, a decrease in superoxide dismutase activities (p<0.0001), and a decrease in oxidation protein products (p<0.001) and TBARS (p<0.05) concentrations. However, there was also a clear increase in homocysteine (p<0.0001) after a month of white wine consumption. The results of our non-placebo controlled trial suggest that regular daily white wine consumption is associated not only with both antioxidative and antiatherogenic effects but also with a potentially proatherogenic increase of homocysteine concentrations. and D. Rajdl, J. Racek, L. Trefil, K. Siala.
Time delay in the mediation of ventilation (VE) by arterial CO2 pressure (PaCO2) was studied during recovery from short impulse-like exercises with different work loads of recovery. Subjects performed two tests including 10-s impulse like exercise with work load of 200 watts and 15-min recovery with 25 watts in test one and 50 watts in test two. V . E, end tidal CO2 pressure (PETCO2) and heart rate (HR) were measured continuously during rest, warming up, exercise and recovery. PaCO2 was estimated from PETCO2 and tidal volume (VT). Results showed that predicted arterial CO2 pressure (PaCO2 pre) increased during recovery in both tests. In both tests, VE increased and peaked at the end of exercise. VE decreased in the first few seconds of recovery but started to increase again. The highest correlation coefficient between PaCO2 pre and V . E was obtained in the time delay of 7 s (r=0.854) in test one and in time delays of 6 s (r=0.451) and 31 s (r=0.567) in test two. HR was significantly higher in test two than in test one. These results indicate that PaCO2 pre drives VE with a time delay and that higher work intensity induces a shorter time delay., R. Afroundeh, T. Arimitsu, R. Yamanaka, C. S. Lian, K. Shirakawa, T. Yunoki, T. Yano., and Obsahuje bibliografii
We evaluated the effects of exercise on the vascular constrictor responses to α-adrenergic stimulation in the db/db mice. Twenty male db/db and their age-matched wild-type (WT) mice were exercised (1 hour/day, five days a week). Mice were anesthetized 7 weeks later, thoracic aortae were mounted in wire myograph and constrictor responses to phenylephrine (PE, 1 nM-10 μM) were obtained. Citrate synthase activity measured in the thigh adductor muscle was significantly increased in db/db mice that were exercise trained. Maximal force generated by PE was markedly greater in db/db aortae and exercise did not attenuate this augmented contractile response. Vessels were incubated with inhibitors of nitric oxide synthase (L-NAME, 200 μM), endothelin receptors (bosentan, 10 μM), protein kinase C (PKC) (calphostin C, 5 μM), cyclooxygenase (indomethacin, 10 μM) or Rho-kinase (Y-27632, 0.1 μM). Only calphostin-C normalized the augmented PE-induced constriction in db/db and db/db- exercised mice to that observed in WT (p<0.05). Cumulative additions of indolactam, a PKC activator, induced significantly greater constrictor responses in aortic rings of db/db mice compared to WT and exercise did not affect this response. Our data suggest that the augmented vasoconstriction observed in the aorta of db/db mice is likely due to increased PKC activity and that exercise do not ameliorate this increased PKC-mediated vasoconstriction., M. Khazaei, F. Moien-Afshari, T. J. Kieffer, I. Laher., and Obsahuje bibliografii a bibliiografické odkazy
Several diseases induce hypermetabolism, which is characterized by increases in rest ing energy expenditures (REE) and whole body protein loss. Exaggerated protein degradation is thought to be the driving force underlying this response. The effects of caspase and calpain inhibitors on REE in physiological and hypermetabolic conditions, how ever, are unknown. Thus, we studied whether MDL28170 (calpain inhibitor) or z-VAD-fmk (caspase inhibitor) affect REE under physiological conditions and during hypermetabolism post -burn. Rats were treated five times weekly and observed for 6 weeks. Treatmen t was started 2 h (early) or 48 h ( late) after burn. In normal rats, MDL28170 transiently increased REE to 130 % of normal during week 2-4. z-VAD-fmk reduced REE by 20-25 % throughout the observation period. Within 14 days after burns, REE increased to 13 0±5 % . Whereas MDL28170/ early treatment did not affect REE, MDL28170/ late transiently increased REE to 180±10 % of normal by week 4 post- burn. In contrast, with z -VAD -fmk/ early REE remained between 90-110 % of normal post- burn. z-VAD-fmk/ late did not affect burn-induced increases in REE. These data suggest that caspase cascades contribute to the development of hypermetabolism and that burn-induced hypermetabolism can be pharmacologically modulated. Our data point towards caspase cascades as po ssible therapeutic targets to attenuate hypermetabolism after burns, and possibly in other catabolic disease processes., P. G. Vana, H. M. LaPorte, R. H. Kennedy, R. L. Gamelli, M. Majetschak., and Obsahuje bibliografii
Spontaneous activity of cortical neurons exhibits alternative fluctuations of membrane potential consisting of phased depolarization called "up-state" and persistent hyperpolarization called "down-state" during slow wave sleep and anesthesia. Here, we examined the effects of sound stimuli (noise bursts) on neuronal activity by intracellular recording in vivo from the rat auditory cortex (AC). Noise bursts increased the average time in the up-state by 0.81±0.65 s (rang e, 0.27-1.74 s) related to a 10 s recording duration. The rise times of the spontaneous up-events averaged 69.41±18.04 ms (range, 40.10-119.21 ms), while those of the sound-evoked up-events were significantly shorter (p<0.001) averaging on ly 22.54±8.81 ms (range, 9.31- 45.74 ms). Sound stimulation did not influence ongoing spontaneous up-events. Our data suggest that a sound stimulus does not interfere with ongoing spontaneous neuronal activity in auditory cortex but can evoke new depolarizations in addition to the spontaneous ones., Y. Zhang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
We compared the effects of adaptation to intermittent high altitude (IHA) hypoxia of various degree and duration on ischemia-induced ventricular arrhythmias in rats. The animals were exposed to either relatively moderate hypoxia of 5000 m (4 or 8 h/day, 2-3 or 5-6 weeks) or severe hypoxia of 7000 m (8 h/day, 5-6 weeks). Ventricular arrhythmias induced by coronary artery occlusion were assessed in isolated buffer-perfused hearts or open-chest animals. In the isolated hearts, both antiarrhythmic and proarrhythmic effects were demonstrated depending on the degree and duration of hypoxic exposure. Whereas the adaptation to 5000 m for 4 h/day decreased the total number of premature ventricular complexes (PVCs), extending the daily exposure to 8 h and/or increasing the altitude to 7000 m led to opposite effects. On the contrary, the open-chest rats adapted to IHA hypoxia exhibited an increased tolerance to arrhythmias that was even more pronounced at the higher altitude. The distribution of PVCs over the ischemic period was not altered by any protocol of adaptation. It may be concluded that adaptation to IHA hypoxia is associated with enhanced tolerance of the rat heart to ischemic arrhythmias unless its severity exceeds a certain upper limit. The opposite effects of moderate and severe hypoxia on the isolated hearts cannot be explained by differences in the occluded zone size, heart rate or degree of myocardial fibrosis. The proarrhythmic effect of severe hypoxia may be related to a moderate left ventricular hypertrophy (27 %), which was present in rats adapted to 7000 m but not in those adapted to 5000 m. This adverse effect can be overcome by an unknown protective mechanism(s) that is absent in the isolated hearts., G. Asemu, J. Neckář, O. Szárszoi, F. Papoušek, B. Ošťádal, F. Kolář., and Obsahuje bibliografii